How to detect them, scientifically?

Not an easy task

- Difficult to detect
- Generic detection → difficult to distinguish from "traditional" widespread attacks
- Same techniques, different methodologies
- Assist cybercrime investigations
- To **reduce** the number of normal incidents down to a more manageable amount for **further in-deep analysis**.

Idea

- Identify groups of similar machines
- Share a common network behavior
 - With respect to the malicious resources they access/request
 - e.g. exploit kits, drive-by-downloads, C&C servers
- Correlate location and industry information
- Build "context"

SPuNge's Approach

Working Data

- HTTP(S) network traces
 - Population of ~20,000,000 installations
- Collected at proxy-level, client-side
- Already-known malicious URLs
 - Drive-by / web-based malware, fakeAVs, C&C servers, etc...

Pre-Processing

- Classification: Ignore parental controlled URLs
- Network sampling: Keep a single "candidate" event per network (Class B)
- Event sampling: Remove multiple identical requests from single machine
 - E.g. Botnet -controlled machines
- Duplicates identification: Remove URLs widely requested (e.g. >50 networks) → Widespread
- Whitelisting: Remove entries known to be useless (by previous iterations)

Step 1: Clustering

- Given a set of arbitrary elements, *without prior information*, identifies and assigns the elements to **groups** (called clusters)
- **Patterns** in the collected data (URLs)
- Group malicious URLs according to similar Hostname or Request (Path + Query String) – or both

Host vs Request Clustering

		-			
	cr5aigslist.com	craigsli8st.com	crauglist.com	craeglist.com	google.com
cr5aigslist.com	0	0.0666	0.1428	0.1428	0.520
craigsli8st.com	0.0666	0	0.1428	0.1428	0.520
crauglist.com	0.1428	0.1428	0	0.0769	0.478
craeglist.com	0.1428	0.1428	0.0769	0	0.478
google.com	0.520	0.520	0.478	0.478	0
TABLE III	EXAMPLE O	F DISTANCE MAT	TRIX FOR HOST	NAMES	

E III. EXAMPLE OF DISTANCE MATRIX FOR HOSTNAME (NORMALIZED LEVENSHTEIN).

Exploit Kit	URL's Host	URL's Request
Blackhole	http://77.79.13.88	/content/w.php?f=52&e=4
Blackhole	http://188.127.249.241	/image/l.php?f=553&e=2
Blackhole	http://brown.mydomxd.org	/root/w.php?f=2293&e=6
Nuclear	http://zeak.rghil.info	/a456gh/9493af39692e[].jar
Nuclear	http://163.1.32.2	/1rg54e/55c2b44e0c8a[].jar
Nuclear	http://31.184.244.9	/6ju9a2/bb136b125774[].jar
TABLE II.	EXAMPLE OF URLS US	ED BY THE BLACKHOLE ANI
NUCLE	AR EXPLOIT KITS AND DET	FECTED WITH SPUNGE

Distance Function

- Hostname
 - Levenshtein = distance between strings
 - Robert \rightarrow Roger : Robert \rightarrow Rogert, Rogert \rightarrow Roger
- Request
 - Path: Levenshtein
 - Query String: Jaccard
 - # parameters in common (ignore values)
 - http://[hostname]/path1.php?a=10&b=20&c=30
 - http://[hostname]/path2.php?a=100&b=200

 $d_{req}(e_1, e_2) = \sqrt{d_{path}(e_1, e_2)^2 + (WeightFactor \times d_{qsl}(e_1, e_2))^2}$

Bubble View?

- Red = Hostname
- Blue = Request

• Violet = Both (?)

Step 2: Labeling and Merging

- Merge "similar" clusters, subsets
- Assign label to clusters (H/R)

Clusters	Cluster Label	Event	URL
<i>C</i> ₁	H zfmudav4aaq33r5.com >: R /get2.php?c=BLMEUGUBd=266 >: R /CZ4ODY9MzImdHA9MCZmbD0w0	e ₁ e ₂ e ₃ e ₄	zfmudav4aaq33r5.com/get2.php?c=BLMEUGUBd=266 zfmudav4aaq35r5.com/get.php?c=ZLXULJNRd=266 zfmudav3aap36r5.com/CZ4ODY9MzImdHA9MCZmbD0w0 zfmudav2acq35r4.com/CZ4ODY9MzImdHB9MCZmbD0w1
<i>C</i> ₂	H facebookc.com	65 66 67 68	facebookc.com facaebook.com faceboook.com facebopok.com
<i>C</i> ₃	H h-aelameftzgj4vxient.com =: R /qKA0rO4d8I7qBhS7Y2xrPTQu	e ₉ e ₁₀ e ₁₁ e ₁₂	h-aelameftzgj4vxient.com/qKA0rO4d8l7qBhS7Y2xrPTQu h-aelameftxcd5vxient.com/lkG1yP3L8q5YPtU7Y2xrPTQu h-aelameftssd6vxient.com/BAq3T78d8l5Q7bs0Y2xrPTQu h-aelanfftzgj1vxient.com/pA71gKND6P5MTls9Y2xrPTQu

Step 3: Machines Mapping

• Map URLs into machines \rightarrow IP addresses

Cluster	Cluster Label	Event	Source Machine
<i>C</i> ₁	H zfmudav4aaq33r5.com >: R /get2.php?c=BLMEUGUBd=266 >: R /CZ4ODY9MzImdHA9MCZmbD0w0	е ₁ е ₂ е ₃ е ₄	M ₁ M ₂ M ₃ M ₄
<i>C</i> ₂	H facebookc.com	е5 е ₆ е7 е8	M ₁ M ₂ M ₅ M ₆
C ₃	H h-aelameftzgj4vxient.com =: R /qKA0rO4d8l7qBhS7Y2xrPTQu	e ₉ e ₁₀ e ₁₁ e ₁₂	M ₃ M ₄ M ₅ M ₇

- Exercise:
 - M1 to which cluster belongs to? M2?

Step 4: Grouping

- Identify machines that belong to the same clusters (>=1).
- Machines that share a similar malicious behavior
- Scenario: Drive-by-download infection
 - 1. The victim is redirected to the malicious page
 - 2. Served with the right exploit.
 - <u>2 Clusters</u>

Step 4: Grouping

- Looking for similar victims
- Groups of machines (IPs) and clusters (URLs)

Source Machine	Clusters
M_1	C_1, C_2
M_2	C_1, C_2
M_3	C_1, C_3
M_4	C_1, C_3
M_5	C_2, C_3
M_6	C_2
M_7	C_3

Groups	Machines Set	Clusters Set	
G_1	M_1, M_2	C_1, C_2	
G_2	M_3, M_4	C_1, C_3	
G_3	M_5	C_2, C_3	
G_4	M_6	C_2	
G_5	M_7	C_3	
EXAMPL	E OF GROUPS (MACHINES AN	D CLUSTERS).

EXAMPLE OF machine $\rightarrow cluster$ Associations.

Last step: Analysis & Reporting

- Correlation: industry & country
- Two type of analysis [2 <= N,C <= 5]:
 - Clusters: N+ machines, operating in the same industry or country, reaching our a cluster of similar URLs (1 cluster)
 - **Groups**: N+ machines sharing C+ clusters
- Exclusive match: No others machines having same behavior
- Automated reporting for threat analysts

Findings

Experiments settings

- Python 2.7 prototype, multi-core
- Process data in daily batch (nighttime)

- 1 week

• Two machines: Processing and Final Analysis

# of	Sun. 11	Mon. 12	Tue. 13	Wed. 14	Thu. 15	Fri. 16	Sat. 17
Raw Events (Million)	2.792	5.170	5.584	5.685	5.225	4.911	2.628
Events	387,339	536,524	256,270	221,954	230,758	269,103	329,458
Clusters	4,106	8,825	8,195	7,825	7,196	7,281	3,869
Machines	10,866	15,581	15,413	15,391	14,165	14,364	8,406
Groups	2,144	3,941	3,579	3,528	2,679	2,896	1,069

Cluster 7543 - H 146.185.246.116 >:R /p98a.exe >:R /dd.exe

http://1	46.185	.246.111/p98a.exe	NET 1	notepad.exe	2012 - 11 - 13	09:50:35
http://1	46.185	.246.116/p18a.exe	NET 1	notepad.exe	2012 - 11 - 13	09:50:37
[]		55				
http://1	46.185	.246.121 / mailsa . exe	NET 1	notepad.exe	2012 - 11 - 13	09:50:24
http://1	46.185	246.101 / lmqa.exe	NET 1	notepad.exe	2012 - 11 - 13	09:50:26
http://1	46.185	246.63 / dd. exe	NET 2	svchost.exe	2012 - 11 - 13	11:45:27
http://1	46.185	246.63 / dd . exe	NET 3	svchost.exe	2012 - 11 - 13	20:58:55
http://1	46.185	246.104/dqs.exe	NET 1	notepad.exe	2012 - 11 - 13	09:47:36
645= 248		225				
NETWORK	1	Technology	Mexico	Windows 5.	1	
NETWORK	2	Technology	Turkey	Windows 5.	1	
NETWORK	3	Technology	Morocco	Windows 5.	1	

Listing 1.1. RBN Example - Technology Industry

- Victims:
 - 3 international organizations
 - Operating in the same sector: Manufacture
- Persistent Malware: Injection into memory space to avoid easy detection
- Netblock → Russian Business Network, known to provide support for targeted attacks

Group 1245, 2 Clusters, 2 Networks

Cluster 1725, Label:R /list.php?c=140C3[...] =:H w.nucleardiscover.com:888 E1: http://w.nucleardiscover.com:888/list.php?c=140C34E31DAB3B9746[...]&t=0.689831&v=2 E2: http://w.nucleardiscover.com:888/list.php?c=D8C08B5CD1670FA396[...]&v=1&t=0.9288141

```
Cluster 1932, Label:R /gggg_r.jpg?t=0.1424164
E1: http://61.147.99.179:81/gggg_r.jpg?t=0.1424164
E2: http://ru.letmedo.net:2011/myck.jpg?t=0.3245672
```

NETWORK1:	Oil	and	Gas	Malaysia	Windows	5.1	r18nwn.exe	2012 - 11 - 14
NETWORK2:	Oil	and	Gas	Malaysia	Windows	5.1	r18nwn.exe	2012 - 11 - 14

Listing 1.2. Example of Cluster Group - Oil&Gas Industry.

- Victims:
 - 2 Malaysian organizations
 - Energy sector, oil&gas
- C&C servers reached out by r18nwn.exe
- Malware for Industrial Environments
- Domains → Registered by a person in China, associated with Targeted Attacks Operations

Future Work

- On-line processing
- GPU-assisted processing
- Enhance clustering, more features (e.g. process name, hash)
- Increasing number of Targeted Attacks
- Difficult to spoil, similarities with traditional attacks
- SPuNge: Assist cybercrime investigations

Conclusions

"Everything's a tradeoff — now that I can walk upright, I can't wiggle my ears any more."

Thanks!

