
  

How to detect them, scientifically?



  

Not an easy task

● Difficult to detect
● Generic detection → difficult to distinguish from 

“traditional” widespread attacks
● Same techniques, different methodologies

● Assist cybercrime investigations
● To reduce the number of normal incidents down to a 

more manageable amount for further in-deep 
analysis.



  

Idea

● Identify groups of similar machines
● Share a common network behavior

– With respect to the malicious resources they 
access/request 

– e.g. exploit kits, drive-by-downloads, C&C servers

● Correlate location and industry information
● Build “context” 



  

SPuNge's Approach



  

Working Data

● HTTP(S) network traces
– Population of ~20,000,000 installations

● Collected at proxy-level, client-side
● Already-known malicious URLs

– Drive-by / web-based malware, fakeAVs, C&C 
servers, etc... 



  

Pre-Processing

● Classification: Ignore parental controlled URLs
● Network sampling: Keep a single “candidate” event per 

network (Class B)
● Event sampling: Remove multiple identical requests from 

single machine 
– E.g. Botnet -controlled machines

● Duplicates identification: Remove URLs widely requested 
(e.g. >50 networks) → Widespread

● Whitelisting: Remove entries known to be useless (by 
previous iterations)



  

Step 1: Clustering

● Given a set of arbitrary elements, without prior 
information, identifies and assigns the 
elements to groups (called clusters)

● Patterns in the collected 
data (URLs)

● Group malicious URLs 
according to similar 
Hostname or Request 
(Path + Query String) – or 
both



  

Host vs Request Clustering
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            Distance Function

● Hostname
– Levenshtein = distance between strings

– Robert → Roger : Robert → Rogert, Rogert → Roger

● Request
– Path: Levenshtein

– Query String: Jaccard
● # parameters in common (ignore values)

– http://[hostname]/path1.php?a=10&b=20&c=30

– http://[hostname]/path2.php?a=100&b=200



  

Bubble View?

● Red = Hostname
● Blue = Request

● Violet = Both (?)



  

Step 2: Labeling and Merging

● Merge “similar” clusters, subsets
● Assign label to clusters (H/R)



  

Step 3: Machines Mapping

● Map URLs into machines → IP addresses
●

●

●

●

●

● Exercise: 
– M1 to which cluster belongs to? M2?



  

Step 4: Grouping

● Identify machines that belong to the same 
clusters (>=1).

● Machines that share a similar malicious 
behavior

● Scenario: Drive-by-download infection
– 1. The victim is redirected to the malicious page

– 2. Served with the right exploit.

– 2 Clusters



  

Step 4: Grouping

● Looking for similar victims
● Groups of machines (IPs) and clusters (URLs)



  

Last step: Analysis & Reporting

● Correlation: industry &| country
● Two type of analysis [2 <= N,C <= 5]:

– Clusters: N+ machines, operating in the same 
industry or country, reaching our a cluster of similar 
URLs (1 cluster)

– Groups: N+ machines sharing C+ clusters

● Exclusive match: No others machines having 
same behavior

● Automated reporting for threat analysts



  

Findings



  

Experiments settings

● Python 2.7 prototype, multi-core
● Process data in daily batch (nighttime)

– 1 week

● Two machines: Processing and Final Analysis



  

● Victims: 
– 3 international organizations

– Operating in the same sector: Manufacture

● Persistent Malware: Injection into memory space 
to avoid easy detection

● Netblock → Russian Business Network, known to 
provide support for targeted attacks



  

● Victims:
– 2 Malaysian organizations
– Energy sector, oil&gas

● C&C servers reached out by r18nwn.exe
● Malware for Industrial Environments
● Domains → Registered by a person in China, 

associated with Targeted Attacks Operations



  

Future Work

● On-line processing
● GPU-assisted processing
● Enhance clustering, more features (e.g. process 

name, hash)

● Increasing number of Targeted Attacks 
● Difficult to spoil, similarities with traditional attacks
● SPuNge: Assist cybercrime investigations



  

Conclusions



  

Thanks!


