Exposure: Finding Malicious Domains Using Passive DNS Analysis

Leyla Bilge, Engin Kirda, Christopher Kruegel and Marco Balduzzi
DNS

• One of the core and most important component of Internet

• Besides being used for benign purposes, DNS is popular for malicious use as well
 – Botnet C&C
 – Dropzones
 – Phishing Sites
 – Spamming
Abusing DNS for malicious activity

• Attackers are faced with the same engineering challenges that global enterprises do
 – maintaining a large, distributed and reliable service infrastructure

• Leveraging DNS,
 – They acquire the flexibility to change the IP address of the malicious server
 – They can hide their critical servers behind proxy services
 – They get the flexibility of migrating their malicious servers by offering “fault-tolerant” services
Motivation

• As malicious services are often as dependent on DNS as benign services, being able to identify malicious domains would significantly help mitigate many Internet threats.

• When looking at large volumes of data, DNS requests for benign and malicious domains should exhibit enough differences in behavior that they can automatically be distinguished.
Malware detection through DNS

• Is it possible to find distinguishable features for malicious and benign domains?
 – Fast-flux detectors
 – DNS reputation (Notos)

• Is it possible to build a live malware detection scheme by monitoring the DNS traffic of a network?
EXPOSURE : The Approach

iSecLab @ Eurecom

Diagram:
- Malicious/Benign Domains Collector
- DNS Sensor
- Feature Attribution
- DNS Queries
- Labeled Data
- Unlabeled Data
- Learning Module
- Classifier
DNS Sensor – Data Collector

• Need for **a large amount** of training data
 – Identifying features that are able to distinguish malicious and benign DNS behavior

• We analyzed 2.5 months of DNS data produced by the SIE@ISC sensors

• The DNS traffic: DNS answer returned to the DNS servers
 – Time
 – TTL
 – DNS answer list
 – Domain name queried
Malicious Domains Collector

- A comprehensive list of malicious domains gathered from several sources
 - malwaredomains.com
 - Zeus Block List
 - Malware Domains List
 - Anubis reports
 - Wepawet
 - Phishtank
 - Domains list generated by DGAs of Conficker and Mebroot
Benign Domains Collector

• A list of benign domains that is representative for benign DNS usage
 – Alexa top 1000
 – Domains older than 1 year

• Two-way verification step
 – Cross-checked with the sources we gathered our malware domains list
 – Open Directory Project
 (i.e., a human-reviewed dictionary of web)
Feature Selection

- Time-based features
 - Short life, daily similar behavior, regular-irregular behavior

- DNS answer-based features
 - Fast-flux features, shared ip addresses

- TTL value-based features
 - Avg TTL, std TTL, TTL change

- Domain name-based features
 - Automatically generated domains
Feature Selection

• Time-based features
 – Short life, daily similar behavior, regular-irregular behavior

• DNS answer-based features
 – Fast-flux features, shared ip addresses

• TTL value-based features
 – Avg TTL, std TTL, TTL change

• Domain name-based features
 – Automatically generated domains
Time-based Features

- The time of an individual request is not very useful by itself
 - Requests to a particular domain over time may constitute different patterns on malicious and benign domains

- To analyze the changes of the number of requests for a domain, the collection of DNS queries targeting a domain were converted into time series
Time-based Features

• Malicious services that use the technique named *domain flux* show a sudden increase followed by a sudden decrease on the time series
 – Torpig
 – Conficker

• The problem of detecting *short-lived* domains can be treated as a change point detection (CPD) problem
Time-based Features

- CPD algorithm can also be used for detecting behavioral characteristics of a domain by zooming into its life time
- CPD algorithm outputs the points in time the changes are detected and the average behavior for each duration
- Features extracted from CPD algorithm
 - Number of changes
 - Average behavior
 - Standard deviation of the behavioral changes
 - Average behavior duration
 - Standard deviation of the behavior durations
Time-based Features

Behavioral Change at the Request Count

STD Dev of behavior periods vs. Change count
TTL-Based Features

- Every DNS record has a *Time To Live* (TTL)
- It is recommended that the TTL is set between 1 and 5 days so that the name servers can benefit from DNS caching
- However:
 - Systems that aim for high availability often set low TTL values to benefit from Round Robin DNS
 - A representative example for such systems are Content Delivery Networks (CDNs)
- Unfortunately:
 - Low TTL and Round Robing DNS is useful for the attackers as well. e.g. Fast-Flux Service Networks
TTL Value
TTL Change
Learning Module - Classifier

Error rate / Feature Sets

- Full-Set
- Cross-Validation
- Percentage-Split
Evaluation – SIE Data

• During a period of 2.5 months, we monitored 25 billion DNS queries
 – Since such an amount of data is not feasible in practice to be processed, we applied some filtering policies
 • Alexa TOP 1000
 • Domains that are older than 1 year

• After filtering, our system recorded 4.5 million distinct domains that were queried by real users
Evaluation – SIE Data

• Time series analysis produces accurate results only when the sampling count is high enough
 – Based on the empirical results, we set the threshold to 20 queries

• In our experiments, we focused on 300,000 domains that received more than 20 DNS requests
 – 17,686 out of 300,000 domains detected as malicious
Evaluation – SIE Data / DR

• The percentage split and cross-validation evaluations on the training set show that the detection rate of our classifier is around 98%.

• Can we also detect the malicious domains that do not exist in our training set?
 – During the period of our experiments, malwareurls.com reported 569 domains as being malicious
 – Our system observed 216 of them in the DNS traffic provided by SIE
 – 211 domains detected as malicious by our system
Evaluation – Real-Time Detection

• We deployed our system on an ISP network with 30,000 clients
 – No filtering was applied to the data
• During two weeks of the experiments, we detected 3117 malicious domains
 – 2821 of these domains fall into the category of domains that are generated by DGA, therefore they were all short-lived domains.
 – 5 out of remaining 396 domains were identified as malicious later by some malware analysis tools
 – The rest were cross-checked with McAfee Site Advisor
Top 50 requested malicious domains for 07-02-2011

<table>
<thead>
<tr>
<th>Rank</th>
<th>Domain Name</th>
<th>First Query</th>
<th>Last Query</th>
<th>Request Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>beastbuster.com</td>
<td>02/04/2011 14:49:17</td>
<td>02/07/2011 01:50:17</td>
<td>2552</td>
</tr>
<tr>
<td>2</td>
<td>1aa=4098f55449bb12c09907c946ee98.co.cc</td>
<td>02/04/2011 09:49:12</td>
<td>02/07/2011 01:50:17</td>
<td>1390</td>
</tr>
<tr>
<td>3</td>
<td>2f2e993c89b12c09eb3a02ebf2e31541a4d.co.cc</td>
<td>02/06/2011 00:49:51</td>
<td>02/07/2011 01:50:17</td>
<td>1222</td>
</tr>
<tr>
<td>4</td>
<td>freespot24owo.tk</td>
<td>02/06/2011 12:50:03</td>
<td>02/07/2011 01:50:17</td>
<td>1025</td>
</tr>
<tr>
<td>5</td>
<td>technothaurity.com</td>
<td>02/05/2011 01:49:28</td>
<td>02/06/2011 14:50:05</td>
<td>527</td>
</tr>
<tr>
<td>6</td>
<td>gevaialnc.info</td>
<td>02/02/2011 17:49:32</td>
<td>02/07/2011 01:50:17</td>
<td>493</td>
</tr>
<tr>
<td>7</td>
<td>tab2011conres.com</td>
<td>02/04/2011 17:49:20</td>
<td>02/07/2011 01:50:17</td>
<td>342</td>
</tr>
<tr>
<td>8</td>
<td>fresko.info</td>
<td>02/04/2011 18:49:10</td>
<td>02/07/2011 01:50:17</td>
<td>340</td>
</tr>
<tr>
<td>9</td>
<td>dawlunfuri.info</td>
<td>02/01/2011 18:49:10</td>
<td>02/07/2011 01:50:17</td>
<td>313</td>
</tr>
<tr>
<td>11</td>
<td>theminiasademinmusicgroup.com</td>
<td>02/06/2011 16:50:07</td>
<td>02/07/2011 01:50:17</td>
<td>176</td>
</tr>
<tr>
<td>12</td>
<td>gudiancam10.tk</td>
<td>02/06/2011 15:50:06</td>
<td>02/07/2011 01:50:17</td>
<td>170</td>
</tr>
<tr>
<td>13</td>
<td>facebook78.com</td>
<td>02/05/2011 22:49:49</td>
<td>02/06/2011 19:50:11</td>
<td>168</td>
</tr>
<tr>
<td>14</td>
<td>live65k</td>
<td>02/05/2011 10:49:37</td>
<td>02/06/2011 14:50:05</td>
<td>127</td>
</tr>
<tr>
<td>15</td>
<td>jyung.tk</td>
<td>02/06/2011 10:49:37</td>
<td>02/06/2011 14:50:05</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>qpop00.tk</td>
<td>02/05/2011 10:49:37</td>
<td>02/06/2011 14:50:05</td>
<td>126</td>
</tr>
<tr>
<td>17</td>
<td>farly7k</td>
<td>02/09/2011 10:49:37</td>
<td>02/06/2011 14:50:05</td>
<td>120</td>
</tr>
<tr>
<td>18</td>
<td>marionture.com</td>
<td>02/05/2011 22:49:49</td>
<td>02/07/2011 01:50:17</td>
<td>115</td>
</tr>
<tr>
<td>19</td>
<td>Nisitoblab.co.cc</td>
<td>02/06/2011 15:50:06</td>
<td>02/07/2011 01:50:17</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>rillic.tk</td>
<td>02/06/2011 15:50:06</td>
<td>02/07/2011 17:50:09</td>
<td>91</td>
</tr>
<tr>
<td>21</td>
<td>popularvideos2day.com</td>
<td>02/07/2011 00:50:16</td>
<td>02/07/2011 01:50:17</td>
<td>79</td>
</tr>
<tr>
<td>22</td>
<td>8kopo.tk</td>
<td>02/06/2011 22:50:14</td>
<td>02/07/2011 23:50:15</td>
<td>77</td>
</tr>
<tr>
<td>23</td>
<td>ng297k.tl</td>
<td>02/06/2011 15:50:06</td>
<td>02/07/2011 00:50:16</td>
<td>76</td>
</tr>
<tr>
<td>24</td>
<td>staybaize-addonpack.tk</td>
<td>02/06/2011 15:50:06</td>
<td>02/06/2011 19:50:11</td>
<td>61</td>
</tr>
<tr>
<td>25</td>
<td>jimmimpi.cc.co.cc</td>
<td>02/05/2011 16:49:43</td>
<td>02/06/2011 19:50:11</td>
<td>53</td>
</tr>
<tr>
<td>26</td>
<td>streamshare.cc</td>
<td>02/06/2011 15:50:06</td>
<td>02/06/2011 17:50:09</td>
<td>56</td>
</tr>
<tr>
<td>27</td>
<td>video-sxx-dl0x-artis-terpanas-hot-esxi.tk</td>
<td>02/07/2011 00:50:16</td>
<td>02/07/2011 01:50:17</td>
<td>34</td>
</tr>
</tbody>
</table>
Conclusion

• As DNS is critical service for the functioning of benign services, it plays an important role for malicious activities as well.

• Monitoring the use of DNS on a large-scale allows us to find distinguishable features for malicious and benign domains.

• A real-time malicious domains detection system can be realized using these features.
Thanks...