
How the virus “Remote Shell Trojan” (RST) works

Marco Balduzzi <balduzzi@idi.ntnu.no>

University of Trondheim
Norwegian University of Science and Technology, Department of Telematics

Abstract

This paper introduces the concept of malicious
software, spending more words on virus threats. Later
it focuses on the “Remote Shell Trojan” virus, a well-
known GNU/Linux code which spread across on all
Internet in September 2001.

1. Introduction

Malicious programs are probably the
most dangerous threats for computer
systems; the literatures divides them
into the following classes: viruses,
worms and trojan horses.

The jargon file [1] defines a virus
as a cracker program that searches
out other executable files and infect
them by embedding a copy of itself.
When these programs are executed, the
embedded virus is executed too, doing
bad mistakes and propagating the
infection. Finally the original
program is called and run in normal
way: thus the virus activity is
invisible to the user.
Some viruses infect memory and boot
records instead of simple files,
becoming more aggressive and
dangerous.
A worm is a program which doesn't
require file transmission like
viruses. It takes advantage of
systems vulnerability to diffuse
across the network and infect running
processes. A very famous worm was
coded by R. H. Morris. The story of
“The Internet Worm of 1988” is at
[2].
A trojan horse is a code which
pretend to be a useful program but
when executed it performs some
unwanted or harmful function.
Differently from virus and worms, a
trojan horse doesn't auto-propagate
but require user installation. When
executed, a trojan horse grants to
the cracker the access to the
victim's computer.

Other minor classes of malicious

programs are the backdoors/trapdoors
(secret entry point that allows
someone aware to obtain access to
the system without going through the
usual procedure), the logic bombs
(code embedded in some legitimate
program that's set to “explode” when
certain conditions are met) and
zombies (programs used in DoS
attacks).

2. Overview of “Remote Shell
Trojan” virus

The “Remote Shell Trojan” virus (or
RST) has been discovered by Qualys
at the 5th of September 2001 and
named due to its backdoor
functionality. It's also known with
the name RST.a to distinguishes from
its more recent variant (RST.b)
appeared four months later. An
anonymous has written on buqtraq
mailing-list about its origin [3]:
“RST was developed by us as a
research project and intended only
for internal use on our systems.
[...] An infected binary
accidentally leaked out our research
lab and came into the hands of so
called script kiddies”.

The source code of the virus has
still not been released, thus the
analysis have been made with the
“black-box” techniques or
disassembling the virus executable.

RST doesn't take advantage of the
vulnerability of computer systems;
differently from a worm, the
infection is diffused with the
exchange of file (email attachments
and download). RST attacks GNU/Linux

ELF binaries and when run it infects
all binaries in the current and in /
bin directory (like cp, mv, ps
commands). It also provides a
backdoor functionality which allows
the attacker to launch arbitrary
commands.

3. RST analysis

The virus begins to spread by
attaching itself to a “healthy” ELF
binary using a variation of Silvio
Cesare's technique described here
[4]:
• the viral code inserts itself

between code segment and data
segment;

• the viral code is modified to jump
to original entry point afterwards;

• the entry point of the executable
is changed to run the viral code;

• some field of ELF header are
adjusted (code segment size for
example) and other data are moved
to the end of the virus.

Afterwards the virus forks and the
parent runs the original code while
the child acts in evil way. It spawns
a backdoor listening on UDP port 5503
(the RST.b variant use an EGP raw
socket realizing a more hidden
communication channel). Special
packets enable the backdoor to
execute remote commands with the
privileges of the process.

It's interesting to note that the
virus adopts a anti-debugging
technique which consists in calling
the ptrace(PTRACE_TRACEME) function
to check if someone is debugging us
[5]:

int main()
{
 if(ptrace(PTRACE_TRACEME, 0, 1,0)<0)
 {
 printf("Don't debug me!\n");
 return 1;
 }
 printf("Normal execution...\n");
 return 0;
}

A workaround is to open up the file
in a hex editor and change the int 80
to NOP NOP which prevents ptrace from
being called. Another possibility is
to block the ptrace() syscall with a
LKM (Loadable Kernel Module).

4. Detection and immunization

Many tools has been provided by
antivirus software-houses and
underground community, but nobody of
these work perfectly because of the
many variants of the virus and the
difficulty of debugging.

For detection a reliable procedure
is checking MD5, timestamps and size
of /bin files (host-based IDS like
Tripwire becomes very useful). In
fact the viral code infection alters
binaries.
Another technique it to verify
whether the entry point is exactly
4096 from the end of the code
segment. It'd mean that the
executable is infected.
Some scanners parse `readelf -l`
output for LOAD segments and
calculate the distance between the
start of a new LOAD segment and the
end of the previous one. If the
distance is less than 0x1000 bytes a
warning is printed.

Immunization works by increasing the
size of the text segment by 4096
bytes so that the hole between the
text and data segments is gone. Thus
there is no space for the RST to add
itself to the binary anymore.
If it were known the original entry
point, a simpler solution would be
to restore the entry point. This
technique requires a deep reverse
engineering procedure since many
viral codes store the original entry
point at a non-intuitive address, in
the middle of infective code.

References

[1] The Jargon File,
http://www.catb.org/jargon/
[2] The Internet Worm of 1988,
http://world.std.com/~franl/worm.htm
l
[3] Remote Shell Trojan: Threat,
Origin and the Solution
[4] Unix ELF Parasites And Virus,
http://www.packetstormsecurity.com/9
901-exploits/elf-pv.txt
[5]Linux anti-debugging techniques
(fooling the debugger),
http://vx.netlux.org/lib/vsc04.html

