On the Influence of Free Software on Code Reuse

in Software Development

Marco Balduzzi <marco.balduzzi@madlab.it>

Abstract
Software reuse has become a topic of much interest in the software community due to its
potential benefits, which include increased productivity, quality, and reliability, and
decreased costs and implementation time. There are many potential alternatives to
consider including Commercial Off The Shelf (COTS) components, Free/Open Source
Software (F/OSS) components, or Custom software. This paper analyses the main
advantages and issues related to reuse of Free Software components in software

development.

1. Introduction

The Free Software movement represents one of the most interesting and influential trend
in the software industry over the past decade. Today, more and more software houses
adopt Free/Open Source Software (F/OSS) instead of Commercial Off The Shelf (COTS)
in their development processes. The choice of reusing Free Software components has
profound implications on the quality attributes of the process and of the resulting
product.

This paper discusses the main advantages and issues correlated to the reuse of F/OSS
products in term of software availability, customization, integration, portability,
scalability, cost, licensing, security, human skill and support.

The remainder of this paper is organized as follows: section 2 presents the concept of
Free Software, explains the differences between “Free Software” and “Open Source”
terminologies, and illustrates the Free Software development approach. Section 3
analyses and discusses benefits and issues of the Free Software reuse. Conclusions are

presented in Section 4.



2. Free Software

The original definition of Free Software [1] asserts that a program is Free Software if the
user has the freedom to run, copy, distribute study, change and improve the software.
More precisely, it must guarantee four kinds of freedom:

+ the freedom to run the program, for any purpose (freedom 0).

+ the freedom to study how the program works, and adapt it to your needs
(freedom 1). Access to the source code is a precondition for this.

+ the freedom to redistribute copies so you can help your neighbours (freedom 2).

+ the freedom to improve the program, and release your improvements to the
public, so that the whole community benefits (freedom 3). Access to the source
code is a precondition for this.

A usual error is to interpret the “Free” term for “not to pay” instead of “freedom”. So, the
“father” of the Free Software movement (Richard Stallman [6]) suggests thinking of free
as in free speech, not as in free beer.

Usually, Free Software programs are distributed using the GNU General Public License
(GPL) [2], but exist many other GPL-compatible licenses [3]. The Free Software
movement, contrarily to the Open Source community, does not accept licenses which
permit to give out a program without the its source code, like the Berkeley Standard

Distribution (BSD) [4] license.

2.1 Free Software or Open Source?

Today both “Free Software” and “Open Source” terms are used to indicate the same kind
of software. However the two terms refer to two separate movements with different
views, goals and ways of looking to the world. For the Open Source movement, the issue
of whether software should be open source is a practical question, not an ethical one. As
one person put it, “Open Source is a development methodology; Free Software is a social
movement”. For the Open Source movement, non-free software is a suboptimal solution.
For the Free Software movement, non-free software is a social problem and Free

Software is the solution.

2.2 The Free Software approach

The Free Software approach is the a clear example of large-scale software reuse.



Eric Raymond has characterized the Free Software development process as a bazaar [5].
The bazaar model of software development is based on the two key principles: “given
enough eyeballs, all bugs are shallow” and “release often and release early”. The idea is
to build a “draft” code, to modify and to distribute it through Internet, waiting for the
feedback of the users. The users themselves are programmers that run, debug and patch
the current software version, or implement new features. The contributions are sent to
the project development repository so as to be immediately available to the Free
Software community. This approach takes advantage of the collaboration of many
unknown worldwide eyeballs, which act only “just for fun”, like a famous Linus Torvalds
sentence says.

The bazaar approach is in direct contrast with the traditional software development
process, which Raymond characterizes as a cathedral. In the cathedral model, the
development process is centralized and only an enclosed group of programmers develop
the software. The architectural designs are carefully drafted, and the user feedbacks are
limited because the software releasing process is very slow. The whole software cycle is
well defined from the beginning and uses formal notations.

So, the Free Software approach looks like the typical din and chaos of a bazaar, rather
than the formal and quiet rooms of a cathedral.

The success of the Free Software development model is evident from many case studies
of large successful systems including Linux Kernel OS [7], Apache [8], Mozilla [9] and
OpenOffice [10]. Sourceforge [11], which is the largest repository of F/OSS applications
available on the Internet, shows in its homepage the concrete results of the Free

Software approach: 99,329 registered projects and 1,060,263 registered users.

3. Free Software and reuse

The decision of using existing software versus building from scratch custom software is
one of the most complex and important of the entire development process. The correct
trade-off is reached after having analysed advantages and issues correlated to the reuse
of the two solutions. Otherwise, this paper does not focus on problems concerning reuse
itself, already widely discussed in literature ([R8] and [R20]), but tries to point out the
benefits and issues concerning the reuse of Free Software components instead of COTS

in software development.



3.1 Software availability

The market of the Proprietary Software is not homogeneously distributed: there are few
huge products and many little ones. At the same time the hugest ones own the largest
share of users of their category. Two famous examples are the Microsoft Explorer
browser and the Outlook Express email-client, both widely diffused in the IT community.
This situation creates two types of problems: the choice of the COTS components is often
dictated by market rules and not by software quality and the number of competitive
products available is restricted.

On the other hand, in the Free Software market a real competition and a fair distribution
exist. The greater availability of heterogeneous software components, offered by the
Internet F/OSS repositories (i.e. Sourceforce [11] and Freshmeat []), allow software
engineers to choose the more appropriated component, without a dialogue with the
market. Otherwise in the development process, the steps of choosing, analysing and
testing software components demand much time and effort. So, the larger number of
possible candidates increases complexity and time, affecting the entire development
process cost. In contrast the choice between COTS products is usually easier and quicker.
In spite of the wide availability of different F/OSS components, nowadays many
proprietary products doesn' thave a really competitive F/OSS correspondent. IL.e.
AutoCAD is a widely diffused bi-dimensional CAD which doesn' have a fair “competitor”

in the Free Software community.

3.2 Customization and integration

One of the main innovations of Free Software is the availability of the programs’ source
code. The “freedom 1” expressed in the Free Software definition encourages the study of
the internal software structures and functionalities, allowing the end-user to adapt the
component to his requirements. So, the developer is facilitated to the customization and
the integration of the reusable component into the existing system.

The COTS software instead denies “freedom 1”: the source code is not released and the
modification and the optimization of the software are usually strictly prohibited. Since
most of the commercial components cannot be changed by the user, the integration of

COTS products may require considerable effort and costs. In [12] is introduced an



pratical method to estimate integration costs using COTS components.

Vendors of Proprietary Software are typically under pressure to differentiate their
product with extensions. These value-added features can often lead to incompatibility
and confusion. To protect market share, vendors must selectively add proprietary
extensions to maintain a lock on their client-base.

The Free Software community has no such pressures. Instead its value proposition is to
support the standards very closely. The Free Software community hopes to use the
consensus achieved in that standard and experiences from multiple product
implementations, as a way to stabilize the technology domain, create a commodity item
from that technology and thus create another stable building block in the technology
layers that make up distributed systems.

Reusing standard-compliant components simplifier integration process between different
modules, while the use of a proprietary COTS extension increase drastically integration
effort. An evident problem could occurs when a component is not able manage the
output of another one, like when an audio reader needs to reproduce a proprietary
extension audio file as Window Media Audio (WMA). Standard technologies like Ogg

Vorbis simplify code reuse ensuring a correct integration.

3.3 Portability and scalability

Free Software code is normally much more portable than Proprietary Software. The
availability of the source code permits or facilitates the adaptation and the recompilation
of the components for different environments (O.S." and architecture). Instead, a binary
code compiled for a specific environment difficulty works on different one. This is the
case of COTS software which is normally compiled and distributed for a specific
environment. The end-user is not able to adapt and run the program in a different
environment, but needs to purchase of a new specific version, which could be
unavailable or too cost expensive. Moreover portability requires standards. Standard-
compliant software does not need a particular environment to work; in fact it uses
standardized API and libraries. So it can be ported more easily.

The scalability of the Free Software applications is unbeatable, mainly because the

source code can be specifically optimized for different platforms. Many of the F/OSS

! Operating System



components guarantee an extreme flexibility and personalization of the compilation
parameters and of the configuration.

GNU/Linux for example works on many PDA [13], old low-performance computers, old
and recent game-box consoles, common modern PC hardware, high availability servers,
and it is also used to support massive parallel processing [14]. On the other hand,
Window XP requires a high computational X86 processor with at least 512Mb of RAM

and difficulty works on old hardware.

3.4 Cost

Price is one of the most touted benefits of reusing F/OSS components ([15] and [16]).
Although in the Free Software terminology the “Free” term is interpreted as “freedom”
and not “not to pay”, usually it is possible to obtain F/OSS components without paying
money, simply downloading freely from Internet. This is in agreement with “freedoms 0”
and “freedom 2” of the Free Software model which allow redistributing and reusing the
component for any purpose. However, most people (especially beginners and those
without high-speed Internet connections) could pay a small fee to a distributor for a
nicely integrated package with CD-ROM, paper documentation, and support.

Total Cost of Ownership (TCO) is an increasingly important factor to be considered
when making any software or hardware purchase. Simply put, the TCO should express
not only the initial cost of purchasing the components, but also the ongoing costs
incurred by continuing to maintain and support the system (the “life-cycle of costs”).
John Favaro in [R14] compares some further approaches to reuse investment analysis.
So, the F/OSS reuse is not completely cost-free, because the cost of paper
documentations, support, training, system administration must be considered, just as it
was with proprietary software reuse. Reusing F/OSS products implies a reduction of
upgrade and maintenance costs. A standard cost for upgrading a COTS component is
about half of the original price, while the upgrade patch of a Free Software component
can be optained from Internet without paying, and used multiple times. In contrast,
usually Proprietary licenses prevent from applying a single upgrade patch to many
products.

At the end, the high scalability of Free Software products on slowest hardware platforms

results in lower hardware costs and in some cases requiring no new costs.



3.5 Licensing

The freedoms expressed by Free Software licenses have the big advantage to permit the
free distribution of the programs, lowering drastically the purchasing cost of F/OSS
components. Then, the possibility to access at low cost an unlimited Free Software
repository, has deep implications on integration of Free Software components with the
existing system.

The main idea is that a program reusing F/OSS components is considered to be a
“derivative work”. A great number of licenses approved by the Free Software community
(i.e. the GNU Public License), prevents the user from releasing the software with a
different license. So, a F/OSS component integrated in a commercial software must be
released with the original license and must agree with the same obligations (i.e. the
source-code must be available and freely modifiable). Many organizations consider an
evident loss of reserved information the commercialization of the resulting software (or
only the F/OSS modules) with a Free Software license. The public availability of the
source code could damage the profit and the competition with other software houses.
Close to the GPL, other Free licenses (i.e the Lesser General Public License [17]) permit
to integrate a F/OSS module in a non-free software environment avoiding to distribute
its source code. Otherwise, if the reused F/OSS component has been modified, the
normal conditions of the GNU Public License are applied.

Also, the license violation risk derived from the reuse of F/OSS components often
discourages the software organizations; even the remote possibility that a large scale
software product could be claimed to be risking its commercial distribution by reusing
F/OSS components, frequently results in the decision to include only Proprietary
Software. The many shades included in the software licenses induce most commercial
software organization to pay a legal expert, who is specialized in ensuring the legal

ramifications of reuse of the F/OSS software.

3.6 Security
No one can assert whether a Free Software module is going to be more secure than

proprietary one, or vice versa. The discussion about the security offered by the two



approaches is still open and every day information security experts publish in the
Internet articles that lean towards either of them.

An important truth is that does not exist completely secure programs and that it' wery
difficult to quantify the security of a software component. Every program could contain a
lot of conceptual or syntactic programming errors, or could work incorrectly due to a
wrong configuration or to a problem with an external library or component.

The security of the Free Software applications comes from the bazaar principle “given
enough eyeballs, all bugs are shallow”. In other words, since the source code is open for
all to review, numerous programmers worldwide will be examining the code for security
vulnerabilities. The high availability of contributors improves the process speed of bug
fixing: auditing, exploiting and patching.

On the other hand, closed source applications are only audited for vulnerabilities by paid
programmers working behind “closed doors” on proprietary products. It is easy that the
vendor allocates a few amounts of human resources to the bug fixing process, since it is
more profitable to sell many bugged products than a single secure one.

The vendors of Proprietary Software promote the security of their products with the
concept of “security through obscurity”. A system relying on security through obscurity
may have theoretical or actual security vulnerabilities, but its owners or designers
believe that the flaws are not known, and that attackers are unlikely to find them.
Sometime, the cost for the vendor to fix the bug may be too high and not profitable
advantageous to build and release a relative patch.

At the end, since the user community does not have access to the source code, the
external auditing process is very slow and difficult: the bugs are discovered by

disassembling the program or testing the program with a black box approach'.

3.7 Human skill and support

One of the primary reasons many organizations are slow to adopt Free Software
solutions is the lack of IT people skilled in the Free Software technology. The adoption of
F/OSS components requires a different modus operandi: the IT user must be able not

only to reuse the component like a black-box, but also to modify and adapt it to its own

! A software testing technique whereby the internal workings of the item being tested are not known by the
tester. In a black box test on a software design the tester only knows the inputs and what the expeded
outcomes should be and not how the program produces those outputs. The tester does not ever examine the
programming code and does not need any further knowledge of the program other than its specifications.



requirements. It must know the techniques to develop software in a Free Software
environment.

The major reason for the lack of skills is the current state of the education sector. Due to
the great demand for IT trained people, many IT related courses are poorly designed
courses, which do not teach the theory and the principles of IT. Instead these courses
explain how to use COTS packages; and programming is learned using Proprietary
Software development products and not studying the principles of programming,
algorithms and languages theory. The result is poorly trained graduates without any
foundation in the principles of their craft and little or no analytical ability. These
graduates also go into industry with a preference for the COTS system they are familiar
with. It is not surprising that many employers now days require job applicants to have
additional professional qualifications.

Moreover a lot of Free Software components are UNIX derived , which traditionally lacks
a consistent look-and-feel with which many IT professionals are familiar. Free Software
components usually run from command line or could adopt a particular GUI (i.e. the
UNIX-like O.S. are distributed with at least five different Window Managers and GUI
libraries). Instead much of the COTS software inherits the GUI from the well-known
Windows interface.

Another issue with the adoption of F/OSS components is the different modality of
support offered by the Free Software community. Technical issues arising from COTS
software are directly handled by the vendor: by telephone or by mail (i.e. Microsoft has
a "Knowledge Base" of technical issues for all of their software). Such issues arising from
a Free Software component may be handled by a common support group of contributors
to the project (often via an on-line mailing-list or discussion forum). Custom software

technical issues would be referred to the development team.

4. Conclusion

This paper has presented and discussed the most important advantages and issues
related to the Free Software reuse. The lower cost and the greater portability, scalability
and integration of Free Software induce to consider the reuse of F/OSS components a
winning solution. However, the issues concerning the use of Free-licensed software, and

the higher and particular skills required by handling the Free Software products slow



down the adoption of F/OSS components by the software houses.

The many implications correlated to the use of Free Software, make difficult and
important the correct choice between the two alternatives. Every software application
complies with specific requirements that affect the evaluation of the reusable
components. Globally, it is easy to think that the diffusion of Free Software components
will increase and that much more Information Technology company will found their

business on Free Software.



5. References

[1] The Free Software Definition, http://www.gnu.org/philosophy/free-sw.html

[2] GNU General Public License (GPL), http://www.gnu.org/licenses/gpl.html

[3] List of Free Software Licenses, http://www.gnu.org/licenses/license-list.html

[4] The BSD License, http://www.opensource.org/licenses/bsd-license.php

[5] Eric S. Raymond, “The Cathedral and the Bazaar”,
http://www.catb.org/~esr/writings/cathedral-bazaar/

[6] Richard Stallman's Personal Home Page, http://www.stallman.org/

[7] Linux OS, http://www .linux.org

[8] Apache Web Server, http://www.apache.org

[9] Mozilla Browser, http://www.mozilla.org

[10] OpenOffice, http://www.openoffice.org

[11] SourceForge, the largest F/OSS development website, http://sourceforge.net/

[12] Yakimovich, Bieman, Basili: “Software Architecture Classification for Estimating the
Cost of COTS Integration”, ICSE 1999

[13] “Linux sets its sights on the PDA market”,

http://www .linuxdevices.com/articles/AT8728350077.html

[14] TOP 500 List, http://www.top500.org/lists/current.php

[15] Brendan Scott, “Why Free Software's Long Run TCO must be lower”,
http://www.members.optushome.com.au/brendanscott/papers/freesoftwaretco150702.
html

[16] “Windows VS Linux TCO study”, http://www.theage.com.au/news/Breaking/TCO-
study-Linux-wins-again/2004/12/13/1102786990788.html?oneclick=true

[17] GNU Lesser General Public License, http://www.gnu.org/copyleft/lesser.html

[R8] M. Morisio, C.B. Seaman, A.T. Parra, V.R. Basili, S.E. Kraft, S.E. Condon,
“Investigating and Improving a COTS-Based Software Development Process”, ICSE 2000
[R14] John Favaro, “A Comparison of Approaches to Reuse Investment Analysis”, ICSR
1996

[R20] Brereton P., Budgen D., "Component-based Systems: a Classification of Issues”,

IEEE November 2000



