
Take a Deep Breath:
a Stealthy, Resilient and Cost-Effective Botnet

Using Skype

Antonio Nappa1, Aristide Fattori1, Marco Balduzzi2

Matteo Dell’Amico2, and Lorenzo Cavallaro3

1 DICo, Università degli Studi di Milano, Italy
{nappa, joystick}@security.dico.unimi.it

2 Eurecom, Sophia-Antipolis, France
{marco.balduzzi,matteo.dell-amico}@eurecom.fr

3 Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands
sullivan@few.vu.nl

Abstract. Skype is one of the most used P2P applications on the Inter-
net: VoIP calls, instant messaging, SMS and other features are provided
at a low cost to millions of users. Although Skype is a closed source
application, an API allows developers to build custom plugins which in-
teract over the Skype network, taking advantage of its reliability and
capability to easily bypass firewalls and NAT devices. Since the protocol
is completely undocumented, Skype traffic is particularly hard to analyze
and to reverse engineer. We propose a novel botnet model that exploits
an overlay network such as Skype to build a parasitic overlay, making it
extremely difficult to track the botmaster and disrupt the botnet with-
out damaging legitimate Skype users. While Skype is particularly valid
for this purpose due to its abundance of features and its widespread
installed base, our model is generically applicable to distributed appli-
cations that employ overlay networks to send direct messages between
nodes (e.g., peer-to-peer software with messaging capabilities). We are
convinced that similar botnet models are likely to appear into the wild
in the near future and that the threats they pose should not be un-
derestimated. Our contribution strives to provide the tools to correctly
evaluate and understand the possible evolution and deployment of this
phenomenon.

1 Introduction

Botnets are a major plague of the Internet: miscreants have the possibility to hire
and control armies of several thousands of infected PCs to fulfill their malicious
intents. Theft of sensitive information, sending unsolicited commercial email
(SPAM), launching distributed denial of service (DDoS) attacks, and scanning
activities are among the most nefarious actions attributable to botnets.

The threat posed by bots and their constant and relevant position in the
underground economy made them one of the most discussed topics by security



experts and researchers [27, 20]. A plethora of techniques have been proposed and
deployed to address such a phenomenon [24, 37, 9, 50, 51, 31]. Some of them aim
to understand botnets’ modus operandi [45, 29, 44], while others aim to detect
patterns typically exhibited by bot-infected machines [24, 9, 50, 51].

Unfortunately, despite the efforts spent by the research community in fight-
ing botnets, they remain an omnipresent menace to the safety, confidentiality,
and integrity of Internet users’ data. On the one hand, bots authors, increas-
ingly motivated by financial profits [12, 45], are constantly looking for the most
appealing features a botnet should have: stealthiness (i.e., non-noisy, low-pace,
encrypted and distributed communications), resiliency (to nodes shutdown), and
cost-effectiveness (i.e., easy to infect/spread to new machines). On the other
hand, defense strategies must cope with such ever evolving malware, while being,
at the same time, easy-to-deploy exhibiting a contained rate of false positives.

Skype is the de-facto standard when it comes to VoIP and related commu-
nications. It has a number of ancillary features that make it the ideal platform
for a solid communication infrastructure. In fact, it protects the confidential-
ity of its users by encrypting all their communications, it is fault-tolerant by
adopting a de-centralized communication infrastructure, and it is firewall- and
NAT-agnostic, meaning that it generally works transparently with no particular
network configuration. Therefore, despite its closed-source nature, it is not sur-
prising how Skype has rapidly gained a huge consensus among the millions of
Internet users that use it on a daily basis.

Despite some efforts tailored to understanding Skype’s code and network
patterns [6, 17], such a closed infrastructure remains almost obscure, nowadays.
Skype-generated network traffic is thus extremely difficult to filter and arduous
to analyze with common network-based intrusion detection systems [3]. As an
unavoidable consequence, criminals have soon realized how Skype’s encrypted
communications could then protect the confidentiality of their (illegal) business,
hampering the activities of law enforcement agencies [1, 2, 4, 33]. Even worse, the
whole Skype infrastructure meets perfectly all the aforementioned features for a
stealth, resilient, and cost-effective botnet. A plethora of Skype users can poten-
tially become unwitting victims of a powerful skype-based botnet: the year 2009
alone counted for 443 millions of active Skype accounts, with an average num-
ber of 42.2 millions of active users per day [18]. These numbers would certainly
attract cyber-criminals soon, and such network and communication character-
istics would definitely make the traffic generated by a Skype-based botnet an
especially difficult needle to find within the haystack of regular Skype traffic.

In this paper, we show how to take advantage of the features and protec-
tion mechanisms offered by Skype to create a botnet that is, at the same time,
resilient, easy to deploy and difficult to analyze. Using existing infrastructures
for botnet command and control is not a new idea, since many botnets nowa-



days adopt IRC servers; however, a parasitic peer-to-peer overlay built on top
of another decentralized overlay allows for many new and interesting features4:

– it is hard to set bots and regular Skype traffic apart, as our parasitic overlay
network sits on top of the regular Skype network;

– the malicious network so obtained has no bottlenecks nor single point of
failure, and this is achieved by deploying an unstructured network with no
hierarchical differences among the nodes;

– the lack of a hierarchical structure allows also to use any controlled node as
an entry point for the botmaster;

– our parasitic overlay network tolerates the loss of bots: each node/bot con-
tains only a small set of neighbors used for message passing and no informa-
tion about the botmaster;

– dynamic transparent routing strategies are in charge of routing messages
through alternative routes, should one or more bots become unavailable (e.g.,
shut down);

– the policy adopted for registering new nodes makes it cost-unattractive to
obtain a comprehensive list of all the bots.

Simulation experiments we performed show that our model is indeed practical
and guarantees a strong resilience to the botnet, ensuring that messages are
delivered even when many bots are offline.

It is worth noting that exploring emergent threats is a problem with im-
portant practical consequences, as already acknowledged by the research com-
munity [49]: emerging botnets have already begun to adopt stealthy commu-
nications [45] and de-centralized network infrastructures [29, 44] as a mean to
become more resilient and hard to track down to keep contributing to the flour-
ishing cyber-criminal business. Thus, a necessary first step for developing robust
defenses is that to study about emergent threats. This is the motivation of our
work: to show that it is easy, feasible, and practical to deploy a stealth, resilient,
and cost-effective botnet. We finally conclude the paper by sketching the design
and implementation of a host-based countermeasure that aims to classify Skype
plugins as good or malicious by monitoring their interactions with the core ap-
plication. Although our results are preliminary, they look promising to tackle
such a nefarious threat at the end-host systems.

2 Skype Overview

Skype is a widely used application, which features VoIP and calls to land-line
phones, audio and video conferencing, SMS and instant messaging, and more.
It is organized as a hybrid peer-to-peer (P2P) network with central servers,
supernodes, and ordinary clients [3].

4 We point out that Skype is not the only network that can be exploited by a parasitic
overlay: any de-centralized overlay network providing direct messaging capabilities
between the nodes can be a suitable target.



Supernodes play an important role in the whole network. In fact, a set of
supernodes is responsible for bootstrapping the network. Thus, they act as the
point of entrance in the overlay infrastructure, and messages sent by a node are
routed through them. They are elected by considering different criteria, such as
the availability of a public IP, and the bandwidth/computational resources avail-
able on the client. Thus, every host with such features can become a supernode.

The security of Skype is so strong that Governments of some Countries have
reported that criminals and mobs started using Skype for their communications
in order to avoid eavesdropping by the police forces [1, 4, 33]. The only effective
countermeasures seem to be devoted at attacking the end-hosts system [41].

On the one hand, software that comes with valid security and privacy poli-
cies creates positive sensations of trust and safeness to its users, encouraging the
enlargement of the installed base. On the other hand, the presence of possible
weaknesses in its architecture gives to attackers a means to take advantage of
its features for purposes beyond the original design of the application. Indeed,
miscreants have already started to misuse the API to deploy malware. For in-
stance, Peskyspy5 is a trojan that records Skype conversations and provides a
backdoor to download them, while Pykspa5 and Chatosky5 are two worms that
spread using the Skype chat. Skype malware benefit from the fact of being de-
ployed as Skype plugins. In fact, whenever a plugin issues a command (e.g., to
create a chat or to send a message), Skype behaves exactly as if the command
was invoked by the real user. For example, all the Skype plugins’ traffic that
leave an host is automatically encrypted. Malware can take advantage of these
features to hide themselves and their actions, thus becoming very hard to detect.
All these features make the API appetizing to miscreants that look for new and
powerful means to create and control a botnet [7, 15].

Fortunately, to the best of our knowledge, Skype-based botnets are still ex-
clusively theoretical. Nonetheless, it is interesting to ask ourselves whether such
an emerging threat could potentially be a serious menace to the (Internet) soci-
ety, in the near future. In the following, we show that it is indeed practical and
feasible to build a cost-effective botnet by exploiting the features offered by a
pre-existent overlay networks such as, in our case, Skype.

2.1 The Skype API

The Skype API allows developers to write applications using features such as
sending chat or SMS messages, starting or redirecting calls, or searching for
friends. Unfortunately, this API mechanism is far from being as secure as the
core of Skype is [17].

A weakness of the API is that there is no control over the number of mes-
sages that a plugin is allowed to send. Basically, all the possible activities that a
human user can perform through the client (calls, SMSs and chats) can be au-
tomated by a plugin, without any flooding control that would limit spamming.

5 Symantec names.



For instance, Pykspa, is a Skype-based malware that spreads by spamming mes-
sages with links throughout the Skype chat without any rate-limiting threshold.
Furthermore, a Skype plugin can directly have access to the search routine and
easily harvest many addresses of Skype-registered contacts. This information is
fundamental since the access to the search routine gives the possibility to find
formerly unknown peers.

Every time a third party application wants to interact with Skype, a check is
performed to determine if this software is allowed to access the API. The mech-
anism used by Skype to accomplish this control is based on white/blacklisting.
There are two levels of white/blacklists: local and global. The former is stored
in the Skype configuration file using a hash value: when a new plugin wants to
interact with Skype, at the first execution, Skype comes up with a dialog box
that prompts for the user acknowledgment. When the user selects to authorize
or block the plugin, her decision is stored in the configuration file along with its
hash value. This hash value is the checksum of the plugin binary and is used by
Skype to check for changes in an already authorized plugin. Instead, the latter
list is determined centrally by Skype authorities and then propagated to its users
throughout the P2P network.

Unfortunately, there are two inherent limitations of such an approach. On
the one hand, the existence of API bindings for interpreted languages, make it
hard to white/blacklist a single plugin as the interpreter program is the one that
interacts with the core. On the other hand, hackers were able to reverse engineer
the hash function used to calculate the plugin signatures, and published their
results on the Internet giving to malware authors the possibility to develop their
own extensions [17]. As such a vulnerability can be fixed in the next releases
of Skype, we opt for a different strategy: silently waiting for the authorization
dialog to appear, and then performing a fake click to authorize the malware
without user consent. We implemented this technique in our bot prototype (see
Section 3.2).

3 System Description

In this Section we present our parasitic overlay, a network of non-structured
peers that exchange messages over a pre-existent P2P overlay network such as,
in our case, Skype.

In our botnet, messages exchanged between bots and the master flow through
the network exactly as legitimate messages of the application. This makes the
botnet traffic unrecognizable with respect to the legitimate Skype traffic: par-
asitic overlay nodes behave as ordinary peers of the underlying “host” overlay
network. Fig. 1 shows how nodes communicate in the parasitic overlay: botnet
nodes (in black, on the above layer, linked to the corresponding infected skype
node through a dashed line) send messages to each other directly, without being
aware of how routing is performed in the underlying Skype network.



SN

SN

SN

SN

SN

SC SC

SC

SC

SC

SC

SC
SC

SC

SC

SC
SC

SN

SN

SC
SC

SC

SC

SC

Fig. 1. The parasitic overlay network over Skype. While all the messages are routed
from Skype clients (SCs) through supernodes (SNs), the parasitic overlay network
makes no hierarchical difference between supernodes and regular clients.

3.1 Botnet Protocol

The communication between the bots and the master is protected by using
an ad-hoc encryption scheme in addition to the encryption already performed
by Skype. This preserves the confidentiality of the messages exchanged by the
bots, even if Skype disclosed, to law enforcement authorities, the encryption
key of a particular bot-engaged communication. Messages are sent through the
Skype chat as common conversations between users. To accurately replicate the
behavior of botnets present in the wild, we designed the architecture in order
to provide unicast, multicast and broadcast communication between the master
and the bots.

Message Encryption. Bots can receive single commands, group commands
and global commands, respectively useful for well targeted attacks, botnet rental
or for updates or massive attacks. This is possible by using different encryption
mechanisms between the master and the bots. Each node owns a set of symmetric
keys: a node key, used to receive unicast messages from the master, and any
number of group keys, to receive multicast messages. Group keys are sent to
nodes via new messages from the master. All messages from nodes to the master
are encrypted using the master’s public key (shipped with the malware binary),
while messages from the master to nodes are encrypted with the appropriate



symmetric key and signed by the master. All nodes try to decrypt the messages
they receive with the keys they possess. All encrypted messages are prepended
by a random string to avoid that messages containing the same clear-text result
in the same ciphertext.

Message Passing. The message-passing procedure broadcasts every message
to all participating peers in the network, using a flooding algorithm similar to
the one used in unstructured peer-to-peer networks such as Gnutella [22]: when
a peer receives a new message, it forwards it to all neighbors. By doing so,
no routing information to reach the botmaster is disclosed. A set of hashes of
all received messages is locally kept by nodes to avoid forwarding again old
messages. Algorithm 1 shows the details of a bot behavior upon reception of
a message. If the received message has not been processed yet, and if the bot
is able to decrypt the message, it means the new message is directed to him,
thus it verifies if the master’s signature is valid. If this condition holds, the bot
executes the command received in the message. In the end, regardless whether
the message is directed to the bot or not, it stores the hash of the message
and forwards it to its neighbors. Overhead and performances of the flooding
mechanism will be discussed in Section 4.

Botnet Bootstrap. When new nodes join the botnet, they bootstrap their
connection by generating a node key and by connecting to a set of pre-defined
gate nodes (GNs), shipped with the binary, that serve as temporary neighbors
for the network bootstrap. Gate nodes are ordinary nodes connected to the
network, and they are used to reach the botmaster via the message passing
protocol described in Section 3.1. The new node announcement contains its
Skype username, the newly-generated node key and, as any communications
sent from nodes to the botmaster, it is encrypted with the botmaster public
key. Again using the message passing protocol, the botmaster responds with a
list of l nodes that will be, from that moment on, the neighbors of the new
node. This message is encrypted with the node’s symmetric key that was sent
to the botmaster. Appropriate values for the l parameter will be discussed in
Section 4.1. Since the GNs set guarantees to new infected bots the possibility
of joining the network, they may appear as a particularly vulnerable point: if
the GNs are excluded from the Skype network or the malware gets uninstalled
from them, no new nodes can join the botnet. However, it is important to point
out that these gate nodes are ordinary nodes, exactly as the other nodes in the
network, and therefore the list of GNs shipped with the binary can be updated
at will by the botmaster if the GNs are unreachable. Moreover, the gate nodes
do not have any special routing information, and therefore they will not disclose
any information about the identity of the botmaster even if they fall under the
control of an authority and are inspected.

Bootstrap Fail-Over. In the unlikely case the GNs are not available, because
they have been dismissed already, the bot cannot receive any bootstrap list



Input:

– Received message M
– List of neighbors N
– Set of received message hashes H
– List of symmetric keys (node key and group keys) K

Output:

– Commands to execute execute(C)
– Messages to forward forward(F , N)

foreach message M do
if hash(M) ∈ H then

drop(M);
end
else

if M can be decrypted with a key k ∈ K then
C ← decrypt(M , k);
if signature of M is verified then

execute(C);
end

end
add(hash(M), H);
forward(M , N);

end

end
Algorithm 1: Message-passing algorithm.

from the master. As a fallback measure, the bot issues a Skype search based
on a criterion generated from a seed S that is common to all bots. This seed
is obtained by an external source that is completely independent and easily
accessible by every bot, e.g., by following a strategy similar to the Twitter-seeded
domain-flux adopted recently by the Torpig botnet [45]. The master registers one
or more Skype users with usernames generated starting from S and sets in their
public fields, e.g. the status message, the list of the active GNs that the new bots
have to use for their bootstrap phase. As the approach relies on dynamic and
daily updated external sources, it seems unfeasible, for a defense mechanism,
to predict and shut all the soon-to-be-registered users off in a timely, effective,
and cost-effective manner. Moreover, this fallback measure does not expose more
information about the parasitic overlay than the normal bootstrap phase.

3.2 Implementation

The proof-of-concept bot has been entirely developed in Python, exploiting the
capabilities of the Skype4Py library. The library is cross-platform and the bot
developed on Linux runs also on Windows and Mac OS X operating systems.



As discussed earlier, Skype comes with an access control mechanism that
prevents to load a plugin without an explicit user acknowledgment. At the first
execution of a plugin, Skype prompts the user with an authorization request
that blocks the program execution until an answer is given. Subsequently, Skype
calculates a signature for the plugin and updates its configuration file. There
are basically two ways to circumvent this Skype-enforced access control mecha-
nism. One would require to reverse the underlying hashing algorithm, while the
other would require to mimic users’ interactions. The first approach, described
in [17], suffers from updates of the hashing algorithm that would require to be
understood and reversed again. On the other hand, the second approach is more
generic and is the one we have thus implemented.

From a malware author’s perspective, such an access control poses a problem
to the automated registration of malicious applications and can decrease the
success rate of an infection. To cope with this issue, we integrated in our bot
an X11 tool [42] that, simulating keyboard and mouse inputs, automatically
validates our plugin registration. We have instructed the prototype to listen and
to react immediately at the Skype authorization dialog, authorizing the plugin in
a concealed fashion. Our implementation bypasses the Skype security protection
mechanism and allows an automated and hidden registration of the bot. The
same approach is practical on Microsoft Windows through the use of standard
libraries (e.g., FindWindow(), GetCurPos(), and MouseEvent() functions [36]),
without the need of external tools.

4 Experiments

We performed two different sets of experiments on our botnet prototype. In
Section 4.1, we describe a simulation of our message-passing algorithm that
aims at evaluating the trade-offs between the overhead due to the message-
passing algorithm and the percentage of bots that are reached by every message.
In Section 4.2, we show the empirical observations made while deploying and
running our bot prototypes on real systems.

4.1 Network Traffic Simulation

To test the effectiveness of message delivery and the overhead it involves, we
wrote a custom simulator that emulates the dynamics of message spreading of
Algorithm 1. Since our message-passing protocol floods messages to all nodes,
relying on cryptography to ensure that only the intended recipients can decrypt
it, we measure the effectiveness of the algorithm with two quantities: coverage,
that is the percentage of nodes that are reached by a message sent from a given
starting node, and the overhead, expressed as the ration between number of
messages sent in the whole system and the number of nodes in it. A perfect
algorithm would have a coverage of 100% (all bots are reached) and an overhead
of 1 (each peer receives exactly one message).



Parameter Description Default

n number of nodes 10,000
l links added by each new peer 100
m number of messages sent in the simulation 100
a probability that a node is online 0.05

Table 1. Parameters for the network traffic simulation.

In our simulator, we generate a network topology with n nodes and l links
per node. We start with a completely connected topology of l nodes, and then
we iteratively add new nodes connecting them with a random subset of l pre-
existing ones, until we reach the desired size of n nodes. Before simulating the
propagation of each message, we consider each node and randomly shut it off or
leave it on according to a uniform probability a, representing the average peer
online availability. Table 1 gives an overview of the simulation parameters.

If we consider our network with the tools of graph theory, it is important to
evaluate the size of connected components in the subgraph that we obtain by
considering only online nodes. In fact, when a message gets propagated starting
from a given node, it will reach all nodes that belong to the same connected
component. For Erdös-Rényi (ER) random graphs, a key value is the number of
edges in the network, which in our case–considering the probability that nodes
are online–corresponds to the value of l · a · n, where n ' n · a is the number of
online nodes. In an ER graph [8], for a large number of nodes n, a giant compo-
nent (i.e., a connected component having size proportional to n) appears when
number of edges is greater than 0.5n, and the whole graph becomes connected
with high probability when this value reaches (ln n/2)n.

While in our case, due to the way we build the network, we do not have a
perfect ER graph, we experimentally observe in Table 2 a similar behavior with
respect to coverage, and a clear trade-off between network coverage and overhead
due to sending redundant messages. In particular, a choice of l = 40, entailing
l · a · n = 2n reaches around 90% of the nodes imposing a cost of 1.88 messages
per node, while a value of l = 92 resulting in l · a · n ' (ln n/2)n reaches 99.84%
of the nodes that are online, but it involves sending 4.57 messages per node.

Links per node (l) Number of edges (l · a · n) Coverage Overhead

10 0.5 · n 8.69% 0.08
20 1 · n 55.23% 0.71
40 2 · n 90.29% 1.88
60 3 · n 96.76% 2.88
92 4.60 · n (' (ln n/2)n) 99.84% 4.57

Table 2. Coverage and overhead for various values of the number of links l.

Figure 2(a) shows the number of hops separating, on average, each node from
the botmaster with growing network size n. This number of steps, and therefore



102 103 104 105

Network size n

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

di
st

an
ce

fro
m

bo
tm

as
te

r

(a) Number of hops.

0 10 20 30 40 50 60
Active links

0

100

200

300

400

500

N
um

be
ro

fn
od

es

(b) Number of online neighbors.

Fig. 2. Informations on network topology.

latencies in message delivery, have a slow logarithmic growth with respect to
the network size. Instead, Figure 2(b) shows the number of online neighbors per
node (n = 100, 000 in this case). Nodes that joined the network earlier are more
likely to have more connections, since they had more opportunities of getting
chosen as new neighbors of nodes that just joined the network.

0 5 10 15 20
Overhead (traffic / messages)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ric

al
C

D
F

sent
received

(a) l = 40.

0 5 10 15 20
Overhead (traffic / messages)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ric

al
C

D
F

sent
received

(b) l = 92.

Fig. 3. Number of sent and received messages per node.

Another important issue is load balancing between peers: in Figure 3, we an-
alyze the empirical CDF with the average number of sent/received messages per
node. We observe that there is no strong deviation from the average for received
messages, while this phenomenon is more strongly perceivable for sent messages.
We attribute this to the fact that the older nodes, being more well-connected
and closer to the “center” of the network, receive their messages generally earlier
than their neighbors and they are thus more often responsible for propagating
them.



4.2 Bot Deployment

We tested our Skype botnet infrastructure on a testbed network of several hosts
that we “infected” with our bot prototype. We simulate the infection by injecting
the bot execution code in the start-up scripts of the infected machine’s users.
In a real scenario, attackers can infect their victims in several different ways,
e.g. by setting-up a drive-by-download site that exploits the visitors’ browser
vulnerabilities or by sending SPAM email embedding the malicious code.

We deployed our bot on 37 hosts, geographically distributed between France
and Italy. In one of them we included the code to support the botmaster op-
erations, such as listing the botnet’s bots, managing the network, and sending
commands.

In a first experiment, we confirmed the capacity of the bot to discover an
active Skype session and to silently register itself as a trusted plugin without
explicit user authorization, as outlined in Section 3.2. Then, once given to each
bot a single gate node (chosen among the botnet nodes), we verified that all bots
correctly joined the botnet, by registering with l = 2 neighbors nodes. By doing
so, we validated the implementation of the botnet bootstrap protocol formulated
in Section 3.1. Table 3 details the timings of bootstrapping steps; bots were able
to complete their bootstrapping procedure, on average, within 12 seconds.

Bootstrap action Time (s)

Attaching to Skype 1.55
Contacting the Botmaster 4.40
Linking to the Network 6.03

Total 11.98
Table 3. Bootstrap timing.

In a second experiment, we booted every bot and made the botnet run for
about 14 hours. We used an ad-hoc fuzzer to instruct commands to the bots at
random time intervals, registering 1,373 total issued orders. The average time for
the master to obtain an answer from a bot that executed a command ranged from
5.25 to 15.75 seconds. We noticed that the variability in this measure depends
mainly on the network topology of our parasitic overlay: older nodes, which are
usually placed closer to the botmaster, receive their messages first regardless of
Internet-level proximity with their neighbors.

With this botnet topology, the bots’ answers were reaching the botmaster
with an average hop count of 3.62 (see Figure 4). This count is higher than the
numbers presented in Figure 2(a), due to a lower value l = 2 chosen in this
setting. However, only a slow logarithmic growth of this value (and of message
delivery latencies) is to be expected with the growth of the network size.

To estimate the amount of traffic generated from our overlay botnet to keep
the botmaster concealed, we picked two random nodes, where we measured and
classified the number of incoming and outgoing messages. The number of dupli-



1 2 3 4 5 6 7 8 9
Hops

0

50

100

150

200

250

300

350

400

P
ac

ke
ts

Fig. 4. Number of hops.

cates between all received messages ranged between 74% and 83%. This added
cost in network traffic is the price to pay in order to obtain the resilience prop-
erties described in Section 4.1.

Finally, to evaluate the resources consumed by our prototype, we installed the
HotSanic analysis tool [38] on all bots to monitor network, CPU, and memory
used by the prototype. Our bandwidth consumption was below 1KB/s even if
during the bootstrap phase it was possible to notice some peaks around 6KB/s
caused by the messages employed for bootstrapping. We can easily assume that
the bandwidth consumption is very low. We did not observe noticeable variations
on the use of CPU and memory.

5 Security Analysis

In this Section, we discuss possible attacks and countermeasures against our
botnet model, focusing on each different part of the botnet lifecycle. In the
following we refer to “attacker” as a security analyst that is trying to compromise
the botnet model. We assume that the attacker is able to reverse engineer the
malware and collect traffic dumps of known bots.

First, it is extremely difficult to obtain information about the network topol-
ogy by observing the traffic sent and received by bots: all traffic undergoes two
levels of encryption (one provided by Skype, the other by our scheme); the bot-
master can manage the network using any infected node as entry point and
change it at will; the routing behavior adopted by the botmaster’s node is ex-
actly the same as any other node. To make the job of the attacker even more
difficult, nodes can be instructed to add random delays to message forwarding
and to randomly generate “garbage” messages that will be delivered to the whole
network even if they cannot be decrypted by any peer.

Second, an attacker that takes control of an infected machine gains access to
the list of neighbors’ Skype usernames and to the messages addressed from the
master to that bot. This data can be used to detect what the botnet, or part of
it, is currently up to (e.g. which SPAM campaigns it is currently perpetrating),



but not very much can be said about the overall botnet infrastructure. Nodes
can change Skype identifiers if the botmaster instructs them to do so, making
information about neighbors short-lived. The botmaster is still very difficult to
track since, when seen from a neighbor’s point of view, it is not distinguishable
from any other infected host.

Third, if an attacker can successfully reverse-engineer the malware, she is able
to discover the hard-coded GNs and to collect the announce sent during boot-
strap. With this information, she can perpetrate a replay attack on the botnet.
This attack is done by repeatedly delivering announce messages to progressively
gather neighbor nodes received during the bootstrap phase. In order to mitigate
this attack, it is possible to limit the number of neighbor nodes sent to new bots
within any defined temporal window.

Finally, since in our model messages are flooded to the whole network, an
attacker can try to overburden the botnet nodes by sending a large number
of meaningless messages to the network; to mitigate this effect, we propose to
adopt a rate-limiting approach on incoming messages [28]: in this way, only a
given maximum number of messages from each neighbor is routed to the rest of
the network; thus, only the closest neighbors of each attacker will be likely to
suffer from the attack.

6 A Host-Based Skype Malware Detector

We have so far discussed how a hideous Skype plugin can infect a victim to make
it part of a botnet. In the following, we describe an approach that allows for a
deep analysis of Skype plugins, possibly leading to the detection of the evil ones.

As mentioned earlier, Skype’s network traffic is encrypted with strong cryp-
tography algorithms and its binary is protected by anti-debugging and obfusca-
tion techniques [3, 17]. While these functionalities create a very good protection
system for common users, they also constitute a limit as it is almost impossible
for an external entity to investigate Skype’s internals and its network traffic. Our
idea leverages the fact that, while all the network traffic is encrypted, the mes-
sages exchanged on the API communication channel established between Skype
and a plugin, as seen in Section 2.1, are completely in clear text. It is therefore
possible to analyze the actions performed by a plugin before they are delivered
to the Skype core to infer a model that describe the plugin’s behaviors at best.

We propose a behavior-based analysis of the command protocol layer (CPL)
of the Skype API, for the purpose of detecting whether an application is per-
forming malicious actions through Skype. The set of Skype’s API commands
is quite small and therefore behavior-based analysis can be very effective when
applied to the CPL.

The command protocol layer API is based on messaging between Skype and
a plugin. This messaging is performed by leveraging the system’s standard func-
tions. In a first setup phase, known as attach phase, a plugin establish a channel
between itself and Skype, known as the communication layer. Messages are then



exchanged over this layer between the two applications, using a plain-text com-
mand protocol.

To perform our analysis, we hijack the attach phase. The hijacking is done
through a two-part system: the first component is a Skype plugin of its own,
known as proxy, while the second one is WUSSTrace, a Windows user-space sys-
tem call tracer [34]. When the proxy receives messages from the target plugin,
it simulates the corresponding Skype behavior and replies, thus establishing a
communication layer between itself and the plugin. From now on, the proxy acts
as a relay and forwards commands sent over the channel from the target plu-
gin to Skype, and viceversa. The plugin is unaware of not being communicating
directly with Skype and it consequently behaves normally.

The proxy component includes an analysis engine and several models of mali-
cious behaviors that we created observing the API calls issued by existing Skype
malware. By matching the behavior of the attached plugins with the malicious
models at our disposal, it is possible to give an preliminary evaluation of the
plugin behavior.

Our behavior-based approach is similar to the ones proposed by other mal-
ware detection and analysis systems [10, 35]. The main difference lies in the fact
that we apply it to a different (and higher) level, i.e. the API CPL. By keep-
ing our analysis at the higher CPL level, we avoid all the fine-grained details
that other techniques must cope with. These details include, for example, syscall
analysis and system API analysis, that are often greatly complex and costly. At
the same time, we are able to extract the behavioral semantic of a Skype plugin,
exactly as similar techniques.

The first set of results we obtained shows a high rate of false-positive during
analyses performed on a certain temporal window. We plan to overcome this
limitation by appropriately throttling the temporal window size and inserting
an API message rate limiting. This limit should be tailored on the number of
interesting API actions performed by plugin in a certain amount of time. We
have defined a small set of “interesting” actions and we plan, as a future work, to
refine this set by observing the behavior of benign and malign plugins. Through
these observations and experiments, we also plan to better refine the temporal
window parameter used so far. Although the classification technique is still in an
early development stage we are convinced that our approach is a good starting
point.

7 Related Work

The botnet phenomenon has quickly become a major security concern for Inter-
net users. As such, it has rapidly gained popularity among the mass media and
the attention of the research community interested in understanding, analyz-
ing, and detecting bot-infected machines [29, 44, 45]. Even worse, such a threat
is nowadays exacerbated by the fact that malware authors are willing to give
up their fame for an economic profit [12, 45]: a reason that motivates by itself



miscreants, more than ever, to constantly work towards stealth, high-resilient,
and low-cost botnets.

Storm [29] and Waledac [44] are probably the two most famous P2P-based
botnets present in the wild. Although these botnets are hard to track down due
to their decentralized infrastructure, researchers have shown how it is possible to
infiltrate them, disrupt their communications, and acquire detailed information
about the botnets’ modus operandi (e.g., spreading/infection mechanisms, type
of threats, corpus of infected hosts).

To overcome such drawbacks, Starnberger et al. presented Overbot in [43].
Overbot uses an existing P2P protocol, Kademlia, to provide a stealth command
and control channel while guaranteeing the anonymity of the participating nodes
and the integrity of the messages exchanged among them. Overbot is the closest
work to ours; although we share a similar underlying decentralized structure,
there are a number of salient properties that set the two approaches apart. In our
approach, the communication bootstrap of a node starts by sending messages
using a set of pre-defined nodes–gate nodes (GNs)–that are shipped with the
malware. Gate nodes are ordinary bot-infected nodes, and, as such, they perform
message routing exactly as any other node. They are just used during the initial
bootstrap phase every time a new infected node wants to join the network, but,
after that, they do not need to continuously receive communication. On the other
hand, sensor nodes in Overbot are a resident part of the botnet: an observer may
perform statistical analysis and inferences on the traffic that such nodes generate
and receive. Furthermore, Overbot’s sensor nodes are equipped with the private
key of the botmaster. This means that once a node is compromised, it becomes
possible to decrypt all the traffic sent to the botmaster. On the other hand, a
compromised node in our approach exposes only its symmetric key, which gives
the chance to disclose the traffic sent only by that node.

Research in the analysis and detection of bot-infected machines has been
quite prolific in the past years [14, 21, 39, 5, 23, 25, 26, 24, 31, 51, 46, 50, 9].

Original signature-based systems, focused on the detection of syntactic arti-
facts of the malware, are vulnerable to obfuscation techniques and have thus been
superseded by approaches that aim to characterize the behavior of a malicious
samples on end-user systems [32, 35, 52, 19, 10]. These approaches are usually ef-
fective in analyzing, detecting and describing malware behaviors. Unfortunately,
the ability of the malware to mimic legitimate process behaviors may trick such
systems to produce too many false alarms. Moreover, the computational re-
sources required to perform the analysis are non-negligible, and, even worse,
users are required to install the analysis platform on their machines. Therefore,
it is desirable to have complementary solutions that monitor network events to
spot malware-infected machines.

From a different perspective, research in the detection of bots based on the
analysis of network events has proceeded by following two main directions. One
line of research revolves around the concept of vertical correlation. Basically,
network events and traffic are inspected, looking for typical evidence of bot
infections (such as scanning) or command and control communications [25, 23,



5]. Unfortunately, some of these techniques are tailored to a specific botnet
structure [23, 5], while others rely on the presence of a specific bot-infection life-
cycle [25]. Others are not immune to encoding or encryption schema as they
require to analyze the packets’ payload [50], and others again are sensible to
perturbation in the network or timing features of the observed connections [9].

The second line of botnet detection research, instead, focuses mainly on hori-
zontal correlation, where network events are correlated to identify cases in which
two or more hosts are involved in similar, malicious communication. Interesting
approaches are represented by BotSniffer [26], BotMiner [24], TAMD [51], and
the work proposed in [46]. Except for [46], which detects IRC-based botnets by
analyzing aggregated flows, the main strength of the these systems is that they
are independent on the underlying botnet structure, and thus, they have shown
to be effective in detecting pull-, push-, and P2P-based botnets. On the other
hand, correlating actions performed by different hosts requires that at least two
hosts in the monitored network are infected by the same bot. As a consequence,
these techniques cannot detect single bot-infected hosts. This is a significant
limitation, especially when considering the trend toward smaller botnets [14].

Even worse, state-of-the-art techniques [24] are generally triggered upon the
observation of malicious and noisy behavioral patterns, where scan, SPAM, and
DDoS activities are probably the most representative actions. Unfortunately,
in their quest to an ever increasing illegal financial gain [20, 27] and to avoid
being easily detected by making much ado for nothing, bots engage in low-
pace, legitimate-resembling activities [45]. Spotting such communications be-
comes then a very hard task, which, in the end, hampers the detection of the
infected machines.

The parasitic overlay network presented in this paper has all the features re-
quired to thwart the current state-of-the-art botnet detection approaches. Mes-
sage encryption hampers the creation of content-based network signatures, while
unknown routing strategies make it difficult to track down IP addresses. In ad-
dition, Skype itself makes the network highly resilient to failure and provide a
massive user corpus, which gives the chance to rely on a non-negligible number
of bots. It is worth noting that speculations on using Skype as a vehicle to build
a powerful botnet infrastructure have been around for a while [7, 15, 30, 47, 48,
13]. Fortunately, to the best of our knowledge, such rumors have never evolved
into a full-fledged Skype-based botnet in the wild. We have nonetheless shown
that such a botnet can be easily designed and implemented. In addition, our
simulation and deployment experiments have shown that building a stealthy,
resilient and low-cost botnet is indeed possible and practical. Research in botnet
detection must thus be refined to deal with the threats posed by such advanced
malicious networks that are likely to appear in the near future.

8 Conclusion

In this paper we have described that the design and implementation of a stealth,
resilient, and cost-effective botnet based on a general overlay network, such as



the one offered by Skype, is not a chimera. It is indeed a practical and realistic
threat that may emerge in the near future. The unstructured parasitic overlay
network proposed, effectively propagates messages leaving to each node only a
limited knowledge of the whole network topology, making the botmaster difficult
to track down and making the network difficult to map.

In the parasitic overlay, messages are flooded through the network to avoid
propagating information about how to reach the botmaster, relying on cryptog-
raphy to ensure that the messages can be only be read by the intended recipients.
In future work, taking inspiration from routing strategies in anonymous peer-to-
peer networks [40, 11, 16], we intend to explore more efficient routing strategies
for messages, making sure that the information given to each node makes it still
difficult to track down the botmaster.

Since we believe that the menace posed by the model of botnet presented in
this paper will soon emerge, our future works will focus also on the improvement
of the host-based detection technique we briefly outlined.

9 Acknowledgments

This work has been supported by the European Commission through project
FP7-ICT-216026-WOMBAT, by the French ANR through the VAMPIRE project
and through the MECANOS project by the POLE de Competitivite SCS (France).

References

1. adnkronos international. Italy: Govt probes suspected mafia use of Skype,
February 2009. http://www.adnkronos.com/AKI/English/Security/?id=3.0.

3031811578.
2. Anderson, N. Is Skype a haven for criminals?, February 2006. http://

arstechnica.com/old/content/2006/02/6206.ars.
3. Baset, S., and Schulzrinne, H. An analysis of the Skype peer-to-peer internet

telephony protocol. In CoRR (2004).
4. BBC. Italy police warn of Skype threat, February 2009. http://news.bbc.co.

uk/2/hi/europe/7890443.stm.
5. Binkley, J. R. An algorithm for anomaly-based botnet detection. In SRUTI ’06

(2006).
6. Biondi, P., and Desclaux, F. Silver Needle in the Skype, March 2006.
7. Blancher, C. Fire in the Skype–Skype powered botnets..., October 2006. http:

//sid.rstack.org/pres/0606_Recon_Skype_Botnet.pdf.
8. Bollobás, B. Random Graphs. Cambridge University Press, January 2001.
9. Cavallaro, L., Kruegel, C., and Vigna, G. Mining the network behavior of

bots. Tech. Rep. 2009-12, Department of Computer Science, University of Califor-
nia at Santa Barbara (UCSB), CA, USA, July 2009.

10. Christodorescu, M., Jha, S., Seshia, S. A., Song, D., and Bryant, R. E.
Semantics-aware malware detection. In Proceedings of the 2005 IEEE Symposium
on Security and Privacy (Oakland 2005) (2005).

11. Ciaccio, G. Improving sender anonymity in a structured overlay with imprecise
routing. In Lecture Notes in Computer Science (2006).



12. CNET News. Hacking for dollars, July 2005. http://news.cnet.com/

Hacking-for-dollars/2100-7349_3-5772238.html.

13. CNET News. Skype could provide botnet controls, January 2006. http://news.
cnet.com/2100-7349_3-6031306.html.

14. Cooke, E., Jahanian, F., and McPherson, D. The zombie roundup: under-
standing, detecting, and disrupting botnets. In SRUTI’05: Proceedings of the
Workshop on Steps to Reducing Unwanted Traffic on the Internet (2005).

15. Danchev, D. Skype to control botnets?!, January 2006. http://ddanchev.

blogspot.com/2006/01/skype-to-control-botnets.html.

16. Dell’Amico, M. Mapping small worlds. In IEEE P2P 2007 (2007).

17. Desclaux, F., and Kortchinsky, K. Vanilla Skype part 2, June 2006.

18. Ebay. Ebay, Paypak, Skype 2009 Q1 financial report. http://ebayinkblog.com/
wp-content/uploads/2009/04/ebay-q1-09-earnings-release.pdf.

19. Egele, M., Kruegel, C., Kirda, E., and Yin, H. Dynamic Spyware Analysis.
In Proceedings of the 2007 Usenix Annual Conference (Usenix 07) (2007).

20. Franklin, J., Paxson, V., Perrig, A., and Savage, S. An Inquiry into the
Nature and Causes of the Wealth of Internet Miscreants. In CCS ’07: Proceedings
of the 14th ACM Conference on Computer and Communications Security (2007).

21. Freiling, F. C., Holz, T., and Wicherski, G. Botnet tracking: Exploring
a root-cause methodology to prevent distributed denial-of-service attacks. In In
Proceedings of 10 th European Symposium on Research in Computer Security, ES-
ORICS (2005).

22. Gnutella Development Forum. Gnutella protocol specification. http://wiki.
limewire.org/index.php?title=GDF.

23. Goebel, J., and Holz, T. Rishi: Identify Bot Contaminated Hosts by IRC
Nickname Evaluation. In HotBots’07: Proceedings of the First Workshop on Hot
Topics in Understanding Botnets (2007).

24. Gu, G., Perdisci, R., Zhang, J., and Lee, W. BotMiner: Clustering Analysis
of Network Traffic for Protocol- and Structure-Independent Botnet Detection. In
Proceedings of the 17th USENIX Security Symposium (2008).

25. Gu, G., Porras, P., Yegneswaran, V., Fong, M., and Lee, W. BotHunter:
Detecting Malware Infection Through IDS-Driven Dialog Correlation. In Proceed-
ings of the 16th USENIX Security Symposium (2007).

26. Gu, G., Zhang, J., and Lee, W. BotSniffer: Detecting Botnet Command and
Control Channels in Network Traffic. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS’08) (2008).

27. Gutmann, P. The Commercial Malware Industry. In Proceedings of the DEFCON
conference (2007).

28. He, Q., and Ammar, M. Congestion control and message loss in Gnutella net-
works. In Proceedings of SPIE (2003).

29. Holz, T., Steiner, M., Dahl, F., Biersack, E., and Freiling, F. Measure-
ments and Mitigation of Peer-to-Peer-based Botnets:A Case study on Storm Worm.
In USENIX Workshop on Large Scale Exploits and Emerging Threats (2008).

30. IT World. Making a PBX ’botnet’ out of Skype or Google
Voice?, April 2009. http://www.itworld.com/internet/66280/

making-pbx-botnet-out-skype-or-google-voice.

31. Karasaridis, A., Rexroad, B., and Hoeflin, D. Wide-scale Botnet Detection
and Characterization. In HotBots’07: Proceedings of the First Workshop on Hot
Topics in Understanding Botnets (2007).



32. Lanzi, A., Sharif, M., and Lee, W. K-Tracer: A System for Extracting Kernel
Malware Behavior. In the 16th Annual Network and Distributed System Security
Symposium (NDSS’09) (2009).

33. Leiden, J. Anti-mafia cops want Skype tapping, Feburary 2009. http://www.

theregister.co.uk/2009/02/24/eurojust_voip_wiretap_probe/.
34. Martignoni, L., and Paleari, R. WUSSTrace - a user-space syscall tracer for

Microsoft Windows. http://security.dico.unimi.it/projects.shtml.
35. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., and Mitchell, J. C.

A Layered Architecture for Detecting Malicious Behaviors. In Proceedings of the
International Symposium on Recent Advances in Intrusion Detection, RAID, Cam-
bridge, Massachusetts, USA (Sept. 2008).

36. Microsoft. MSDN Library on developing Windows User Interfaces. http://

msdn.microsoft.com/en-us/library/ms632587(VS.85).aspx.
37. Passerini, E., Paleari, R., Martignoni, L., and Bruschi, D. FLuXOR: De-

tecting and Monitoring Fast-Flux Service Networks. In Lecture Notes in Computer
Science (2008).

38. Pissny, B. HotSanic, HTML overview to System and Network Information Center,
July 2004. http://hotsanic.sourceforge.net.

39. Rajab, M. A., Zarfoss, J., Monrose, F., and Terzis, A. A Multifaceted
Approach to Understanding the Botnet Phenomenon. In IMC ’06: Proceedings of
the 6th ACM SIGCOMM on Internet measurement (2006).

40. Sandberg, O. Distributed routing in small-world networks. In ALENEX 2006
(2006).

41. Schneier, B. Bavarian government wants to intercept Skype calls. http://www.

schneier.com/blog/archives/2008/02/bavarian_govern.html.
42. Sissel, J. xdotool. http://www.semicomplete.com/projects/xdotool/.
43. Starnberger, G., Kruegel, C., and Kirda, E. Overbot - A botnet protocol

based on Kademlia. In Proceedings of the International on Security and Privacy
in Communication Networks, SecureComm, Istambul, Turkey (2008).

44. Stock, B., Goebel, J., Engelberth, M., Freiling, F., and Holz, T. Walow-
dac - Analysis of a Peer-to-Peer Botnet. In European Conference on Computer
Network Defense (EC2ND) (November 2009).

45. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M.,
Kemmerer, R., Kruegel, C., and Vigna, G. Your Botnet is My Botnet: Analy-
sis of a Botnet Takeover. In Proceedings of the 16th ACM conference on Computer
and Communications Security (CCS’09) (2009).

46. Strayer, W. T., Walsh, R., Livadas, C., and Lapsley, D. Detecting botnets
with tight command and control. In Proceedings of the 31st IEEE Conference on
Local Computer Networks (2006).

47. TechWorld. Cambridge prof warns of Skype botnet threat. VoIP traffic can cover
a multitude of sins., January 2006. http://news.techworld.com/security/5232/
cambridge-prof-warns-of-skype-botnet-threat/.

48. TechWorld. How bad is the Skype botnet threat? Skype’s sneakiness leads to a
security risk., January 2006. http://features.techworld.com/security/2199/

how-bad-is-the-skype-botnet-threat/.
49. EU Forward. Forward: Managing Emerging Threats in ICT Infrastructures,

2008. www.ict-forward.eu.
50. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., and Kirda,

E. Automatically Generating Models for Botnet Detection. In 14th European Sym-
posium on Research in Computer Security (ESORICS), Lecture Notes in Computer
Science, Springer Verlag (2009).



51. Yen, T.-F., and Reiter, M. K. Traffic Aggregation for Malware Detection.
In DIMVA ’08: Proceedings of the 5th international conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (2008).

52. Yin, H., Song, D., Egele, D. M., Kruegel, C., and Kirda, E. Panorama:
Capturing System-wide Information Flow for Malware Detection and Analysis. In
CCS ’07: Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security (2007).


