
#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

OTRazor
Static Code Analysis for Vulnerability Discovery

in Industrial Automation Scripts

Federico Maggi
Trend Micro Research

Marcello Pogliani
Politecnico di Milano

Research co-authors: Marco Balduzzi, Davide Quarta, Stefano Zanero

© 2020 Trend Micro Inc. & Politecnico di Milano

© 2020 Trend Micro Inc. & Politecnico di Milano

This Talk in Three Sentences

• Overlooked design flaws in industrial robot programming languages

© 2020 Trend Micro Inc. & Politecnico di Milano

This Talk in Three Sentences

• Overlooked design flaws in industrial robot programming languages

• Can lead to vulnerable logic or to hide new kinds of malware

© 2020 Trend Micro Inc. & Politecnico di Milano

This Talk in Three Sentences

• Overlooked design flaws in industrial robot programming languages

• Can lead to vulnerable logic or to hide new kinds of malware

• We’ll share how to prevent and how to detect both cases

#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

How do we program industrial robots, anyways?

#BHUSA @BLACKHATEVENTS

Marcello Pogliani, Politecnico di Milano

© 2020 Trend Micro Inc. & Politecnico di Milano

Teaching by Showing vs. Programming Languages

© 2020 Trend Micro Inc. & Politecnico di Milano

Example Code Snippet: ABB’s RAPID

point0

point1

© 2020 Trend Micro Inc. & Politecnico di Milano

Same Concept, Different Language: KUKA’s KRL

pos1

pos2

© 2020 Trend Micro Inc. & Politecnico di Milano

Proprietary Languages

Language Vendor

RAPID ABB

KRL KUKA

MELFA BASIC Mitsubishi

AS Kawasaki

PDL2 COMAU

PacScript DENSO

URScript Universal-Robot

KAREL FANUC

© 2020 Trend Micro Inc. & Politecnico di Milano

Vendor File System Directory Listing

ABB ü ü

KUKA ü

Mitsubishi ü

Kawasaki

COMAU ü Indirect

DENSO

Universal-Robot

FANUC ü ü

Features: Handle File Resources

© 2020 Trend Micro Inc. & Politecnico di Milano

Features: Load new Code at Runtime

Vendor File System Directory Listing Load Module From File Call By Name

ABB ü ü ü ü

KUKA ü

Mitsubishi ü

Kawasaki

COMAU ü Indirect ü ü

DENSO ü ü

Universal-Robot

FANUC ü ü ü ü

© 2020 Trend Micro Inc. & Politecnico di Milano

Features: Network Communication

Vendor File System Directory Listing Load Module From File Call By Name Communication

ABB ü ü ü ü ü

KUKA ü ü

Mitsubishi ü ü

Kawasaki ü

COMAU ü Indirect ü ü ü

DENSO ü ü ü

Universal-Robot ü

FANUC ü ü ü ü ü

© 2020 Trend Micro Inc. & Politecnico di Milano

A look at the Runtime Environment

HARDWARE

OS

PERM.

APP

PERM.

APP

isolated

mediated
access

© 2020 Trend Micro Inc. & Politecnico di Milano

A look at the Runtime Environment

HARDWARE

OS

USER
PROG. unrestricted

flat

USER
PROG.

USER
PROG.

HARDWARE

OS

PERM.

APP

PERM.

APP

isolated

mediated
access

#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

Secure Programming vs. Automation Engineers

#BHUSA @BLACKHATEVENTS

Federico Maggi, Trend Micro Research

© 2020 Trend Micro Inc. & Politecnico di Milano

We Asked Automation Engineers...

What language features do you use when programming robots?

© 2020 Trend Micro Inc. & Politecnico di Milano

Do OT Folks Talk About Security?

2.5%
5.5%
1.8%
0.9%
7.2%
0.0%
1.1%

-
4.7%

-
0.3%

Discussion about
security-related topics

© 2020 Trend Micro Inc. & Politecnico di Milano

Security-related Keywords Mentioned

Online Community Since Users Topics Messages Security-related
Terms

forum.adamcommunity.com 2010 33286 3783 6702 170
dof.robotiq.com 2016 - 1500 83
automationforum.in 2012 220 1900 7800 147
robot-forum.com/robotforum 2006 17611 19166 90134 892
control.com 1997 - - 69,700 5,068
solisplc.com/forum 2018 134 36 87 0
forums.mrplc.com 2006 46144 33540 164787 1810
reddit.com/r/robotics 2008 83614 - - 638
plc.myforum.ro 2012 93948 41841 41841 1,968
forum.universal-robots.com 2017 - - - 24
forums.robotstudio.com 2,013 19,723 8,959 19,723 68

2.5%
5.5%
1.8%
0.9%
7.2%
0.0%
1.1%

-
4.7%

-
0.3%

Discussion about
security-related topics

© 2020 Trend Micro Inc. & Politecnico di Milano

Let’s Recap

• Scarce security awareness at least according to our small interview
plus the online community

© 2020 Trend Micro Inc. & Politecnico di Milano

Let’s Recap

• Scarce security awareness at least according to our small interview
plus the online community

• Industrial robots (and probably other machines) are programmed
using legacy, proprietary languages

© 2020 Trend Micro Inc. & Politecnico di Milano

Let’s Recap

• Scarce security awareness at least according to our small interview
plus the online community

• Industrial robots (and probably other machines) are programmed
using legacy, proprietary languages

• These languages have security-sensitive features

© 2020 Trend Micro Inc. & Politecnico di Milano

Let’s Recap

• Scarce security awareness at least according to our small interview
plus the online community

• Industrial robots (and probably other machines) are programmed
using legacy, proprietary languages

• These languages have security-sensitive features

• There’s no fine-grained isolation system for such features

© 2020 Trend Micro Inc. & Politecnico di Milano

What Could Possibly Go Wrong?

• Developers can introduce vulnerabilities that can be exploited

• Threat actors can abuse the language features to write malware

© 2020 Trend Micro Inc. & Politecnico di Milano

We Found out that…

• Developers can introduce vulnerabilities that can be exploited
• Yes, we found vulnerable code published on GitHub

• Threat actors can abuse the language features to write malware
• Yes, we were able to write a network-capable, self-spreading malware dropper

#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

Vulnerable Automation Scripts

#BHUSA @BLACKHATEVENTS

Marcello Pogliani, Politecnico di Milano

© 2020 Trend Micro Inc. & Politecnico di Milano

Vulnerabilities in Industrial Robot Programs

Security-sensitive Features + Lack of Input Validation
=

Vulnerabilities

Various instances:
• Unrestricted Movement Commands
• Path Traversal
• Unrestricted Function Calls

programming languages security awareness

© 2020 Trend Micro Inc. & Politecnico di Milano

Unrestricted Movement Commands

Example: motion servers

deg = 20 MOVE(20)

task
program

network robot controller

© 2020 Trend Micro Inc. & Politecnico di Milano

Motion Servers as Cross-Platform Adapters ICS-ALERT-20-217-01

https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-20-217-01

© 2020 Trend Micro Inc. & Politecnico di Milano

Unrestricted Movement Commands

Without Input Validation

deg = 20 MOVE(20)

deg = 50 MOVE(50)

deg = stuff MOVE(stuff)

task
program

network robot controller

© 2020 Trend Micro Inc. & Politecnico di Milano

Unrestricted Movement Commands

With Input Validation

deg = 20 MOVE(20)

deg = 50 invalid

task
program

network robot controller

© 2020 Trend Micro Inc. & Politecnico di Milano

A Vulnerable Motion Server

© 2020 Trend Micro Inc. & Politecnico di Milano

Directory Traversal on File Retrieval

GET file open(file)

read(file)

task
program

network robot controller

© 2020 Trend Micro Inc. & Politecnico di Milano

Directory Traversal on File Retrieval

GET file

GET ../../vault/secret
no input
validation

open(file)

read(file)

task
program

network robot controller

© 2020 Trend Micro Inc. & Politecnico di Milano

Vulnerable Code Snippets (Examples) - 2

© 2020 Trend Micro Inc. & Politecnico di Milano

Example

Web server root
R
ob

ot
 c

on
tr

ol
le

r

Se
cr

et
s

st
ol

en

Outside
the root

© 2020 Trend Micro Inc. & Politecnico di Milano

Input Validation on Function Calls

Funct = "StartCycle" call("StartCycle")

Funct = "Wait" call("wait") robot will wait

Funct = <any...> call(<any defined function>)

task
program

network robot controller

© 2020 Trend Micro Inc. & Politecnico di Milano

Input Validation on Function Calls

• With input validation...

Funct = "StartCycle" call("StartCycle")

Funct = "Wait"
invalid

task
program

network robot controller

#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

From Automation Logic to Custom Malware

#BHUSA @BLACKHATEVENTS

Federico Maggi, Trend Micro Research

© 2020 Trend Micro Inc. & Politecnico di Milano

• Exchange files via network

Are These Languages Good to Write Malware?

Vendor File System Directory Listing Load Module From File Call By Name Communication

ABB ü ü ü ü ü

KUKA ü ü

Mitsubishi ü ü

Kawasaki ü

COMAU ü Indirect ü ü ü

DENSO ü ü ü

Universal-Robot ü

FANUC ü ü ü ü ü

© 2020 Trend Micro Inc. & Politecnico di Milano

• Load or send data via network

• Jump to code available at runtime

Are These Languages Good to Write Malware?

Vendor File System Directory Listing Load Module From File Call By Name

ABB ü ü ü ü

KUKA ü

Mitsubishi ü

Kawasaki

COMAU ü Indirect ü ü

DENSO ü ü

Universal-Robot

FANUC ü ü ü ü

© 2020 Trend Micro Inc. & Politecnico di Milano

• Load or send data via network

• Jump to code available at runtime

• Scan the network for targets

Are These Languages Good to Write Malware?

Vendor Communication

ABB ü

KUKA ü

Mitsubishi ü

Kawasaki ü

COMAU ü

DENSO ü

Universal-Robot ü

FANUC ü

© 2020 Trend Micro Inc. & Politecnico di Milano

• Load or send data via network

• Jump to code available at runtime

• Scan the network for targets

• Turing-complete language

Are These Languages Good to Write Malware?

© 2020 Trend Micro Inc. & Politecnico di Milano

Can we Scan the Network?

© 2020 Trend Micro Inc. & Politecnico di Milano

Can we Exfiltrate Files?

© 2020 Trend Micro Inc. & Politecnico di Milano

A Generic Malware Dropper

1. Read data from the network
2. Write data to file

3. Load that file as code

© 2020 Trend Micro Inc. & Politecnico di Milano

Putting it All Together

© 2020 Trend Micro Inc. & Politecnico di Milano

How to Bootstrap the Infection?

• Option 1: We have an RCE in the automation scripts

• Option 2: The attacker can be a bit more creative

© 2020 Trend Micro Inc. & Politecnico di Milano

How to Bootstrap the Infection?

• Option 1: We have an RCE in the automation scripts

• Option 2: The attacker can be a bit more creative

#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

Automatic Detection of Unsafe Code Patterns

#BHUSA @BLACKHATEVENTS

Marcello Pogliani, Politecnico di Milano

© 2020 Trend Micro Inc. & Politecnico di Milano

Sources and Sinks

Attacker-controlled input concrete impact

sensitive sources sensitive sinks

File

Inbound communication
(e.g., network)

Teach Pendant (UI)

Robot Movement

File Handling (e.g., read)

File Modification (e.g.,
write configuration)

Call by Name

© 2020 Trend Micro Inc. & Politecnico di Milano

Overall Architecture of the Analyzer

1 2 3 4

CFG
Generation

Dataflow
Analysis

Task program’s
source code

Parsing

RAPID parser

KRL parser

...

MoveJ point0
WaitTime 4
MoveL point1
WaitTime 5
...

ICFG
Generation

Potential
Vulnerabilities

Potentially
Abused Features

Insecure Patterns
&

Malicious Patterns

© 2020 Trend Micro Inc. & Politecnico di Milano

Demo Time

© 2020 Trend Micro Inc. & Politecnico di Milano

Detection Results

• Hard to find public code (it’s intellectual property)
• 100 RAPID and KRL files on public repo (e.g., GitHub and GitLab)

Vulnerability Projects Files Root Cause

Network à RCE 2 2 Dynamic code loading

Network à File Access 1 4 Unfiltered open file

Network à Arbitrary
Movement

13 34 Unrestricted Move
Joint or Move to point

Detection Errors 2 12 Interrupts

#BHUSA @BLACKHATEVENTS © 2020 Trend Micro Inc. & Politecnico di Milano

Closing Remarks

#BHUSA @BLACKHATEVENTS

Federico Maggi, Trend Micro Research

© 2020 Trend Micro Inc. & Politecnico di Milano

Defense and Remediation Approaches

• Secure communication: hard to implement without language support

• Input validation: hard to fix – what to do when invalid input comes in?

• Privilege separation: requires changes at the OS/runtime level

• Code signing: will probably take 5-10 years to see this widely deployed

© 2020 Trend Micro Inc. & Politecnico di Milano

Sound Bytes

• feels like 25 years ago: remember the first vulns in web apps?

© 2020 Trend Micro Inc. & Politecnico di Milano

Sound Bytes

• feels like 25 years ago: remember the first vulns in web apps?

• No resource isolation: if bad things happen…can be very bad!

© 2020 Trend Micro Inc. & Politecnico di Milano

Sound Bytes

• feels like 25 years ago: remember the first vulns in web apps?

• No resource isolation: if bad things happen…can be very bad!

• Automation engineers: please follows security guidelines

© 2020 Trend Micro Inc. & Politecnico di Milano

Sound Bytes

• feels like 25 years ago: remember the first vulns in web apps?

• No resource isolation: if bad things happen…can be very bad!

• Automation engineers: please follows security guidelines

• CISOs: please consider to audit logic written in proprietary languages!

© 2020 Trend Micro Inc. & Politecnico di Milano

Get in Touch and Stay Tuned

• We have a working prototype that can find vulnerabilities in
• ABB RAPID
• KUKA KRL

• If you’re interested: get in touch with us!

Detecting Insecure Code Pa�erns in Industrial Robot Programs
Marcello Pogliani
Politecnico di Milano

marcello.pogliani@polimi.it

Federico Maggi
Trend Micro Research

federico_maggi@trendmicro.com

Marco Balduzzi
Trend Micro Research

marco_balduzzi@trendmicro.com

Davide Quarta
EURECOM

davide.quarta@eurecom.fr

Stefano Zanero
Politecnico di Milano

stefano.zanero@polimi.it

Abstract
Industrial robots are complex and customizable machines that can
be programmed with proprietary domain-speci�c languages. These
languages provide not only movement instructions, but also access
to low-level system resources such as the network or the �le system.
Although useful, these features can lead to taint-style vulnerabilities
and can be misused to implement malware—on par with general-
purpose programming languages. In this paper, we analyze the
languages of 8 leading industrial robot vendors, systematize their
technical features, and discuss cases of vulnerable and malicious
uses. We then describe a static source-code analyzer that we created
to analyze robotic programs and discover insecure or potentially
malicious code paths. We focused our proof-of-concept implementa-
tion on two popular languages, namely ABB’s RAPID and KUKA’s
KRL. By evaluating our tool on a set of publicly available programs,
we show that insecure patterns are found in real-world code; there-
fore, static source-code analysis is an e�ective security screening
mechanism, for example to prevent commissioning insecure or ma-
licious industrial task programs. Finally, we discuss remediation
steps that developers and vendors can adopt to mitigate such issues.

CCS Concepts
• Computer systems organization ! Robotics; • Security and
privacy! Software security engineering;

Keywords
industrial robotics; security vulnerabilities; robot programming

ACM Reference Format:
Marcello Pogliani, Federico Maggi, Marco Balduzzi, Davide Quarta, and Ste-
fano Zanero. 2020. Detecting Insecure Code Patterns in Industrial Robot
Programs. In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’20), October 5–9, 2020, Taipei, Taiwan.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3320269.3384735

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6750-9/20/10. . . $15.00
https://doi.org/10.1145/3320269.3384735

1 Introduction
Industrial robots are complex manufacturing machines at the center
of modern factories. Robots are widely interconnected—through
various protocols and technologies—to programmable logic con-
trollers (PLCs), manufacturing execution systems (MESs), vision
systems, and IT and OT networks in the factory �oor. Industrial
robots can be programmed online, using the “teach by showing”
method, or o�ine, using purpose-built, domain-speci�c program-
ming languages. These industrial robot programming languages (IR-
PLs) include special instructions to move the robot’s arm(s), as well
as common control-�ow instructions and APIs to access low-level
resources. Writing task programs (i.e., the programs that de�ne
the task to execute) in IRPLs is useful to implement custom tasks
and integrate external systems in the production process. IRPLs
provide access—in an almost unconstrained way—to several robot’s
resources like its mechanical arm(s), �le-system, network, various
�eldbus protocols, and serial communication.

Recent research looked into the security of industrial machinery,
such as robots. In our previous research [19], we focused on the se-
curity properties of industrial robots, and in a follow-up paper [18],
we mentioned how task programs are part of the attack surface,
showing an example of an application written in a IRPL and vul-
nerable to a “path traversal” issue. Despite this, currently, there are
neither security analysis tools for programs written in IRPLs, nor
security mechanisms to implement resource isolation in common
robotic operating systems (e.g., privilege separation). Furthermore,
the security awareness within the industrial-automation commu-
nity does not seem fully developed, yet. Indeed, from an analysis on
11 popular online industrial automation forums1 totalling 294,680
users, we estimated that as low as 2.31% pages (10,868 out of 469,658)
mention security-related keywords (e.g., security, vulnerability, and
attack), and we discovered vulnerable code snippets2.

As trends show an increased IT-OT convergence and a stream-
lined industrial software development with ample use of third party
code [2, 9, 22], we advocate for a more systematic approach to secure
programs written in IRPLs, on par with common general-purpose
programming languages. As a �rst step, we propose a static source
code analyzer that can pinpoint relevant code paths using data�ow
analysis on the interprocedural control-�ow graph, to detect vulner-

1https://forum.adamcommunity.com/index.php, https://dof.robotiq.com,
https://automationforum.in, https://www.robot-forum.com/robotforum,
https://control.com, https://solisplc.com/forum, http://forums.mrplc.com,
https://www.reddit.com/r/robotics, http://plc.myforum.ro,
https://forum.universal-robots.com, https://forums.robotstudio.com
2https://forums.robotstudio.com/discussion/11662/how-to-continue-cycle-in-
automatic-mode/p1. This code snippet receives coordinates from a network socket
(without authentication and boundary checks), and uses them to control the robot.

