
HTTP Parameter Pollution
Vulnerabilities in Web Applications

Marco `embyte’ Balduzzi
(C. Torrano, D.Balzarotti, E. Kirda)

Do you have the last version of this presentation?
http://www.iseclab.org/people/embyte/slides/BHEU2011/hpp-bhEU2011.pdf

Overview

•  Introduction
•  HTTP Parameter Pollution
•  Detection Approach
•  Tool
•  Experiments
•  Results
•  Demo
•  Conclusions

Who am I?
•  From Bergamo (IT) to the French

Riviera
•  MSc in Computer Engineering
•  PhD student at EURECOM
•  8+ years experience in IT Security
•  Engineer and consultant for different

international firms
•  Co-founder of BGLug, Applied Uni

Lab, (ex) SPINE Group, Nast, etc…

•  http://www.iseclab.org/people/embyte

The Web as We Know It

•  Has evolved from being a collection of simple

and static pages to fully dynamic applications

•  Applications are more complex than they

used to be

•  Multi-tier architecture is the normal

•  Many complex systems have web interfaces

The Web before

Now

Increased Importance of Web Security

•  As a consequence:
–  Web security has increased in importance
–  OWASP, the Top Ten Project
–  Attack against web apps constitute 60% of attacks on

the Internet (SANS’s The Top Cyber Security Risks)
–  Application being targeted for hosting drive-by-

download content or C&C servers
–  Malware targeting browsers (e.g. key and network

loggers)

Increased Importance of Web Security

•  A lot of work done to detect injection type flaws:
–  SQL Injection
–  Cross Site Scripting
–  Command Injection

•  Injection vulnerabilities have been well-studied, and tools
exist
–  Sanitization routines in languages (e.g., PHP)
–  Static code analysis (e.g., Pixy, OWASP Orizon)
–  Dynamic techniques (e.g., Huang et al.)
–  Web Application Firewalls (WAF)

HTTP Parameter Pollution
•  A new class of Injection Vulnerability called HTTP Parameter

Pollution (HPP) is less known
–  Has not received much attention

–  First presented by S. di Paola and L. Carettoni at OWASP 2009

•  Attack consists of injecting encoded query string delimiters into

existing HTTP parameters (e.g. GET/POST/Cookie)
–  If application does not sanitize its inputs, HPP can be used to

launch client-side or server-side attacks

–  Attacker may be able to override existing parameter values, inject a

new parameter or exploit variables out of a direct reach

Research Objectives
•  To create the first automated approach for detecting HPP

flaws
–  Blackbox approach, consists of a set of tests and heuristics

•  To find out how prevalent HPP problems were on the web
–  Is the problem being exaggerated?
–  Is this problem known by developers?
–  Does this problem occur more in smaller sites than larger

sites?
–  What is the significance of the problem?

HTTP Parameter Handling
•  During interaction with web application, client provides

parameters via GET/POST/Cookie
–  http://www.site.com/login?login=alice

•  HTTP allows the same parameter to be provided twice
–  E.g., in a form checkbox

http://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_checkbox
•  What happens when the same parameter is provided

twice?
–  http://www.site.com/login?login=alice&login=bob

Google example

Yahoo example

HTTP Parameter Handling
•  We manually tested common methods of 5 different

languages

•  There is nothing bad with it, if the developer is aware of
this behavior

•  Languages provide secure functions (python’s getfirst())

Technology/Server Tested Method Parameter Precedence
ASP/IIS Request.QueryString(“par”) All (comma-delimited string)

PHP/Apache $_GET(“par”) Last

JSP/Tomcat Request.getParameter(“par”) First

Perl(CGI)/Apache Param(“par”) First

Python/Apache getvalue(“par”) All (List)

HTTP Parameter Pollution

•  An HTTP Parameter Pollution (HPP)
attack occurs
– When a malicious parameter Pinj, preceded by

an encoded query string delimiter (e.g. %26), is
injected into an existing parameter Phost

•  Typical scenario (client-side)
– Web application for election for two candidates

HTTP Parameter Pollution

•  The two links are built from the URL

•  No sanitization

Url : http://host/election.jsp?poll_id=4568

Link1:
 Vote for Mr.White
Link2:
 Vote for Mrs.Green

ID = Request.getParameter(“pool_id”)
href_link = “vote.jsp?poll_id=” + ID + ”&candidate=xyz”

HTTP Parameter Pollution
•  poll_id is vulnerable and Attacker creates URL:

http://host/election.jsp?poll_id=4568%26candidate%3Dgreen
•  The resulting page now contains injected links:

•  If the developer expects to receive a single value
–  Jsp’s Request.getParameter(“candidate”)returns the 1st value

–  The parameter precedence is consistent…

•  Candidate Mrs. Green is always voted!

 Vote for Mr. White

 Vote for Mrs. Green

Consequence

•  Override existing (hardcoded) values

•  Inject a new parameter

•  Exploit a parameter out of a direct reach

•  Client-side (user) or server-side (web-

application) attack

Parameter Pollution – More uses
•  Cross-channel pollution

–  HPP attacks can also be used to override parameters
between different input channels (GET/POST/Cookie)

–  Good security practice: accept parameters only from where
they are supposed to be supplied

•  HPP to bypass CSRF tokens
–  E.g. Yahoo Mail client-side attack (di Paola & Carrettoni)

Bonus

•  By concatenating the same parameter multiple time
•  Bypass WAFs input validation checks

–  Exploit ASP concatenation behavior and inline
comments

–  Concatenate the attack payload after the WAF filtering

Standard: show_user.aspx?id=5;select+1,2,3+from+users+where+id=1–
Over HPP: show_user.aspx?id=5;select+1&id=2&id=3+from+users+where+id=1—

Standard: show_user.aspx?id=5+union+select+*+from+users—
Over HPP: show_user.aspx?id=5/*&id=*/union/*&id=*/select+*/*&id=*/from+users--

System for HPP Detection

•  Four main components: browser, crawler, two scanners

Main Components
①  Instrumented browser fetches the web pages and renders their

content
–  Full support for client-side scripts (e.g. Javascript) and external

resources (e.g. <embed>)
–  Extracts all links and forms

②  Crawler communicates with browser, determines URLs to visit
and forms to submit. Passes the information to two scanners

③  P-Scan: Determines page behavior when two parameters with
the same name are injected

④  V-Scan: Tests and attempts to verify that site is vulnerable to
HPP

P-Scan: Analysis of the Parameter Precedence

–  Analyzes a page to determine the precedence of
parameters, when multiple occurrences of the same
parameter are submitted

–  Take parameter par1=val1, generate a similar value
par1=new_val
•  Page0 (original): app.php?par1=val1
•  Page1 (test 1) : app.php?par1=new_val
•  Page2 (test 2) : app.php?par1=val1&par1=new_val

–  How do we determine precedence? Naïve approach:
•  Page0==Page2 -> precedence on first parameter
•  Page1==Page2 -> precedence on second parameter

P-Scan: Problem with the naïve approach

•  In practice, naïve technique does not work well
–  Applications are complex, much dynamic content

(publicity banners, RSS feeds, ads, etc.)

–  Hence, we perform pre-filtering to eliminate dynamic
components (embedded content, applets, iframes,
stylesheets, etc.)

–  Remove all self-referencing URLs (as these change
when parameters are inserted)

–  We then perform different tests to determine similarity

P-Scan: Tests
•  Error test

–  The application crashes, or return an “internal” error, when

an identical parameter is injected multiple times

–  Regexps from the sqlmap project

•  Identity test
–  Is the tested parameter considered by the application

•  Page0=Page1=Page2

•  Base test
–  Test assumes that the pre-filtering works perfectly (seldom

the case)

P-Scan: Tests
•  Join test

–  Are the two values are somehow combined

together (e.g. ASP)?

•  Fuzzy test
–  It is designed to cope with pages whose dynamic

components have not been perfectly sanitized

–  Based on the Gestalt Pattern Matching algorithm

–  Compute the similarity among the pages

V-Scan: Testing for HPP vulnerabilities

•  For every page, an innocuous URL-encoded parameter
(nonce) is injected
–  E.g., “%26foo%3Dbar”
–  Then check if the “&foo=bar” string is included inside the

URLs of links or forms in the answer page

•  V-Scan starts by extracting the list PURL=[PU1,PU2,…PUn] of
the parameters that are present in the page URL, and the
list Pbody=[PB1,PB2,…PUm] of the parameters that are
present in links or forms contained in the page body

Where to inject the nonce

•  PA = PURL ∩ PBody : set of parameters that appear
unmodified in the URL and in the page content (links,
forms)

•  PB = p | p ∈ PURL ∧ p /∈ PBody : URL parameters that do
not appear in the page. Some of these parameters may
appear in the page under a different name

•  PC = p | p /∈ PURL ∧ p ∈ PBody : set of parameters that
appear somewhere in the page, but that are not present in
the URL

V-Scan: Special Cases
•  E.g., one of the URL parameters (or part of it) is used as the

entire target of a link

•  Self-referencing links

•  Similar issues with printing, sharing functionalities
•  To reduce false positives, we use heuristics

–  E.g., the injected parameter does not start with http://
–  Injection without URL-encoding

Implementation – The PAPAS tool

•  PAPAS: Parameter Pollution Analysis System
•  The components communicate via TCP/IP sockets

–  Crawler and Scanner are in Python
–  The browser component has been implemented as a

Firefox extension
–  Advantage: We can see exactly how pages are

rendered (cope with client-side scripts)
–  Support for multiple sessions (parallelization)

Implementation – The PAPAS tool

•  PAPAS is fully customizable
– E.g., scanning depth, number of performed

injections, page loading timeouts, etc.

•  Three modes are supported
– Fast mode, extensive mode, assisted mode

–  In assisted mode, authenticated areas of a site

can be scanned as well

Possible improvements
•  PAPAS does not support the crawling of links embedded

in active content
–  E.g., flash

•  Support additional encoding schemas (UTF-8, Double
URL)

•  PAPAS currently only focuses on client-side exploits
where user needs to click on a link
–  HPP is also possible on the server side – but this is more

difficult to detect
–  Analogous to detecting stored XSS

Ethical Considerations

•  Only client-side attacks. The server-side have
the potential to cause harm

•  We provided the applications with innocuous
parameters (&foo=bar). No malicious code.

•  Limited scan time (15min) and activity
•  We immediately informed, when possible, the

security engineers of the affected applications
–  Thankful feedbacks

Two set of experiments

①  We used PAPAS to scan a set of popular

websites
–  About 5,000 sites collected by the first 500 of

Alexa’s main categories

–  The aim: To quickly scan as many websites as

possible and to see how common HPP flaws are

②  We then analyzed some of the sites we

identified to be HPP-vulnerable in more detail

The 5,016 tested sites

Categories # of Tested
Applications

Categories # of Tested
Applications

Financial 110 Shopping 460
Games 300 Social Networking 117

Government 132 Sports 256
Health 235 Travel 175

Internet 698 University 91
News 599 Video 114

Organization 106 Others 1,401
Science 222

Efficient assessment
•  In 13 days, we tested 5,016 sites and more than 149,000

unique pages
•  To maximize the speed, the scanner

–  Crawled pages up to a distance of 3 from the homepage
–  Considered links with at least one parameter (except for the

homepage)
–  Considered at max 5 instances for page (same page,

different query string)
–  We disabled pop-ups, images, plug-ins for active content

technologies

Evaluation – Parameter Precedence

•  Database Errors
–  Web developers does not seem conscious of the

possibility to duplicate GET/POST parameters

Evaluation – Parameter Precedence
•  Parameter Inconsistency

–  Sites developed using a combination of heterogeneous
technologies (e.g. PHP and Perl)

–  This is perfectly safe if the developer is aware of the
HPP threat… this is not always the case

Evaluation – HPP Vulnerabilities
•  PAPAS discovered that about 1,500 (30%)

websites contained at least one page vulnerable to
HTTP Parameter Injection
–  The tool was able to inject (and verify) an encoded

parameter

•  Vulnerable != Exploitable
–  Is the parameter precedence consistent?
–  Can a possible attacker override existing parameter

values?

Vulnerable or exploitable?
•  Injection on link:

–  Parameter in the middle -> always overriding
–  Parameter at the begin/end -> automated check

via P-Scan

•  Injection on form:
–  The injected value is automatically encoded by the

browser
–  Still, someone may be able to run a two-step

attack (client-side) or a server-side attack

Vulnerable or exploitable?

•  702 applications are exploitable
– About 14%

– The injected parameter either overrides the

value of an existing one or is accepted as

“new parameter”
•  E.g. A new action is injected

Url: pool.pl?par1=val1%26action%3Dreset
Link: target.pl?x=y&w=z&par1=val1&action=reset

Evaluation

•  More sensitive sites are equally (or

even more) affected by the problem

False Positives

•  10 applications (1.12%) use the injected

parameter as entire target for one link

•  Variation of the special case we saw in

slide 18 (V-Scan: special cases)
– The application applied a transformation to the

parameter before using it as a link’s URL

Some Case Studies
•  We investigated some of the websites in more detail

–  Among our “victims”: Facebook, Google, Symantec,
Microsoft, PayPal, Flickr, FOX Video, VMWare, …

–  We notified security officers and some of the problems were
fixed

–  Facebook: share component
–  Several shopping cart applications could be manipulated to

change the price of an item
–  Some banks were vulnerable and we could play around with

parameters
–  Google: search engine results could be manipulated

Homepage injection WHO

Nasa.gov: coldfusion SQL Error

Misleading shopping users

Your (secured) home banking

And Google 

PAPAS Online Service
•  5K websites tested

–  30% sites are vulnerable: injectable parameters
–  14% exploitable: possible to override or introduce arbitrary

parameters/values

•  What about mine?

•  PAPAS @ http://papas.iseclab.org
•  Free-to-use service
•  Ownership token verification
•  Configurable

PAPAS Online Service

DEMO

HPP Prevention

•  Input validation
–  Encoded query string delimiters

•  Use safe methods
–  Parameter precedence (ref. slide 14)
–  Channel (GET/POST/Cookie) validation (ref. slide 19)

•  Raise awareness
–  The client can provide the same parameter twice (or

more)

Acknowledgments, References
•  Co-joint work:

–  M. Balduzzi, C. Torrano Gimenez, D. Balzarotti, and E.
Kirda. Automated discovery of parameter pollution
vulnerabilities in web applications. In NDSS’11, San Diego,
CA.

•  I collected a bunch of resources here:
–  http://papas.iseclab.org/cgi-bin/resources.py

•  S. di Paola, L. Carettoni on HPP @ OWASP 2009
–  http://www.slideshare.net/Wisec/http-parameter-pollution-a-

new-category-of-web-attacks

Conclusion
①  Presented the first technique and system to detect

HPP vulnerabilities in web applications.
•  We call it PAPAS, http://papas.iseclab.org

②  Conducted a large-scale study of the Internet
•  About 5,000 web sites

③  Our results suggest that Parameter Pollution is a
largely unknown, and wide-spread problem

We hope our work will help raise awareness about
HPP!

Questions?

embyte@iseclab.org	

