
THE (IN)SECURITY OF
FILE HOSTING SERVICES

Nick Nikiforakis, Marco Balduzzi

Steven Van Acker, Wouter Joosen, Davide Balzarotti

6th July 2011 OWASP Netherland Chapter Meeting

Sharing is caring

  Internet expanding
 More users
 More Web services
 More Web technologies

  Users need to share files
 P2P is not always the answer
 Emails?

Sharing Services

  Broad selection of services with a wide variety of
applications

  Accessible through the Web from anywhere
  No software-bloating for users
  More free software due

to a different way of
making profit

Bad news…

  A user’s data is now located somewhere else:
 Privacy
 Availability
  Integrity

•  Sad story (T-Mobile & Microsoft):
–  2009: “personal information stored

on your device--such as contacts,
calendar entries, to-do lists or
photos--that is no longer on your
Sidekick almost certainly has been
lost as a result of a server failure
at Microsoft/Danger”

File Hosting Services

  Cloud-storage for the masses
  Share files with other users
  Security through obscurity access-control
  Sharing personal documents as well as pirated files

Lifecycle of a file

  Alice decides to shares some digital content (file)
through a FHS

  FHS received the file, stores it on its Cloud and
generates an identifier which it:

i.  binds with the uploaded file
ii.  returns to the user in a URI form:

http://www.easy-share.com/1916472551/
noctambus.pdf

  URI is shared depending on the nature of the
uploaded file

File Identifier & Privacy

  The identifier (ID) is used to enforce access-control in
a security-through-obscurity way
  ID == access to file

  FHS are typically not-searchable
  ID acts as a shared secret between a FHS and each

user’s files
 Non-owners should not be able to “guess” this secret

100 FHSs: How many privacy-aware?

  We studied 100 FHSs to discover, among others, the
way they generate unique “secret” identifiers
 Uploading files, recording the given ID and comparing

  Removed 12 that had search/browse capabilities

Sequential IDs

  34/88 FHS were generating sequential identifiers
 numeric, or alphanumerical

  20/34 did not append any other non-guessable
information
 e.g. filename or secondary ID

  E.g.
 http://vulnerable.com/9996
 http://vulnerable.com/9997
 http://vulnerable.com/9998

Sequential IDs

  Designed a crawler for the 20 sequential FHS
  Run for 30 days

 Random delays to limit bandwidth and blacklisting
 Scraping only the filenames and sizes (privacy)

  Results:
 > 310,000 file records

Finding private files…

  Depending on the nature of a file, it will be shared
in different ways

  Exploit the ubiquity of search-engine crawlers to
characterize a file as private or public.

  Given a filename
 0 search results -> Private

Private Files Results

  Using Bing:
 54.16% of files returned 0 search results
 Rough approximation of private files due to close pirate

communities

Filetype #Private documents

Images (JPG, GIF, BMP) 27,711

Archives (ZIP) 13,354

Portable Document Format 7,137

MS Office Word 3,686

MS Office Excel Sheets 1,182

MS Office PowerPoint 967

Identifiers of 100 FHSs (summary)

Non-Sequential IDs

  54 FHSs adopt non-sequential identifiers
  len(ID)

Non-Sequential IDs

  54 FHSs adopt non-sequential identifiers
  len(C_SET)

Random but short

  Brute-force short random identifiers

Length Charset #Tries #Files Found

6 Numeric 617,169 728

6 Alphanumeric 526,650 586

8 Numeric 920,631 332

Design & Implementation errors

  Security audit of a popular FHS software product
 Used in 13% of FHSs
 Directory traversal vulnerability
 De-randomization attack for deletion code

 Report-link contained the first 10 characters of the 14-
charater delete code

  16^14 -> 16^4 combinations

Status…

  File hosting services are not privacy-aware
 Sequential identifiers
 Weak non-sequential identifiers
 Bugs in their source code

  Do attackers know about this?
 How do we found out?

Honeypot experiment

  Honeyfiles promising valuable content
 Phished_paypal_details.html!
 Paypal_account_gen.exe!
 Sniffed_email1.doc!

  Each file connects back to our monitor server when
opened
  in HTML files
  embedded HTML in doc files
  TCP socket in executables
 Attempt to open page in pdf files

Carding forum

  One of the decoy files contained valid credentials
for our fake forum
  card3rz_reg_details.html!

  Fake underground carding community
 card3rz.co.cc

  Reasons:
i.  Hide our monitors
ii.  Do attackers use data that they find in illegally

obtained files?

NOW

Honeypot experiment: results

  Monitoring sequential FHSs for 30 days

  275 honeyfiles accesses
  More than 80 unique IP addresses
  7 different sequential FHSs

 1 had a catalogue functionality
 2 had a search functionality
 4 had neither!

  Accesses from all around the world

Geo-location of the bad-guys

HoneyFiles results

  Download ratio of each file:

Claimed content Download ratio

Credentials to PayPal accounts 40.36%

Credentials for card3rz.co.cc 21.81%

PayPal account Generator 17.45%

Leaked customer list 9.09%

Sniffed email 6.81%

List of emails for spamming purposes 5.09%

card3rz.co.cc results

  93 successful logins
 43 different IP addresses
 32% came back at a later time

  Attacks against the monitor and the login-form
 SQL-injection & file-inclusion attacks

  Attackers do in-fact use data from illegally
obtained files

Status…

  File hosting services are vulnerable
 Sequential identifiers
 Weak non-sequential identifiers
 Bugs in their source code

  Attackers are abusing them
 They are using the data found in other user’s files

SecureFS

  A client must protect himself
  Encryption is a good way

 Do people know how to?
  If they do know, does their OS assist them?

  SecureFS
 Encryption to protect a user’s data
 Steganography to mislead potential attackers

  Project site: http://www.securitee.org/sfs/

SecureFS

  Browser-plugin monitoring uploads and downloads
  Protects uploads on-the-fly

  Browser-plugin monitoring uploads and downloads
  Rewrites download links to include the random key

 http://unsafefhs.com/12345
 http://unsafefhs.com/12345/sfs_key/[RND_KEY]

important.doc

ENC(important.doc,RND_KEY) ZIP(FAKE) SFS_HDR

Conclusion

  Large percentage of FHSs fail to provide the user
with adequate privacy
 Hundreds of thousands of files ready to be misused

  Attackers know & exploit this fact
  A user must protect himself:

 SecureFS

Questions

