A Security Evaluation of AIS

Automated Identification System –

Marco Balduzzi, Kyle Wilhoit Alessandro Pasta

- @ Trend Micro Research
- @ Independent Researcher

Automatic Identification System

- Tracking system for vessels
 - Ship-to-ship communication
 - From/to port authorities (VTS)
- Some applications:
 - Maritime security (against piracy)
 - Collision avoidance
 - Search and Rescue Operations / Accident investigations
 - Binary messages, e.g. Weather forecasting
 - Control messages from Authorities

Required Installation since 2002

- Introduced to supplement existing safety systems, e.g. traditional radars
- Required on:
 - ANY International ship with gross tonnage of 300+
 - ALL passenger ships regardless of size

- Estimated 400,000 installations
- Expected over a million

Exchange Format

- AIS messages are exchanged in 2 forms
 - Software: Online Providers
 - Radio-frequency (VHF): 162±0.25 MHz

Online Providers

 Collect and visualize vessels information

- Data collected via:
 - Mobile Apps / Software
 - Formatted emails
 - Radio-frequency gateways deployed regionally

Identified threats – 2 groups

- Implementation specific → AIS providers [SW]
- Protocol specific → AIS transponders [RF]

Category	Threat	SW	RF
Spoofing	Ships	✓	✓
Spooning	AtoNs	✓	✓
	SARs	✓	1
	Collisions (CPA)		✓
	Distress Beacons		1
		✓	
Hijacking	Hijacking	✓	√
Availability Disruption	Slot Starvation		√
	Frequency Hopping		✓
	Timing Attack		√

AIS Application Layer

- AIVDM messages, e.g.:
 - Position reports
 - Static reports
 - Management (channel...)
 - Safety-related (SART)

NMEA format, as GPS

```
!AIVDM, 1, 1, , B, 177KQJ5000G?tO`K>RA1wUbN0TKH, 0*5C
TAG, FRAG_#, FRAG_ID, N/A, CHANNEL, PAYLOAD, [PAD], CRC
```

Example

- AIVDM_Encoder tool
- Ship involved in Military Operations
- MMSI 247 320162 (Italy)

Responsible Disclosure

- We did not interfere with existing systems
- We phisically connected our testing equipment
- Harmless and testing messages

- We reached out the appropriate providers and authorities within time (Sept. 2013)
 - MarineTraffic, AisHub, VesselFinder, ShipFinder
 - ITU-R, IALA, IMO, US Coast Guards

Software Evaluation

Category	Threat	SW	RF	
Spoofing	Ships	✓	✓	
	AtoNs	1	✓	
	${ m SARs}$			
Collisions (CPA)			✓	
	Distress Beacons		✓	
	Weather Forecasting		✓	
Hijacking	Hijacking	✓	✓	
Availability Disruption	Slot Starvation		✓	
	Frequency Hopping		✓	
	Timing Attack		✓	

Spoofing – Online Providers [1/2]

- Ships, AtoNs, SAR Aircrafts
- Technically easy: TCP/IP or Emails


```
$ ./AIVDM_Encoder.py -type=21 -aid_type=13
-aid_name=LOWTIDE
-mmsi=993381001
-long=9.9400 -lat=45.7821
| nc -q0 -u 5.9.207.224 5322
```

Spoofing – Online Providers [2/2]

- Make a ship follow a path over time
- Programmed with Google Earth's KML/KMZ information

Hijacking (MiTM)

Via rogue (malicious) RF-gateway

Software-Hijacking

"Move" a real ship — Eleanor Gordon

Vessel's Details

Ship Type: Tug

Length x Breadth: 60 m X 16 m

Speed recorded (Max / Average): 7.5 / 6.4 knots

Flag: USA [US] Call Sign: WDG4089
IMO: 0, MMSI: 367532850

Last Position Received

Area: Mexico Gulf

Latitude / Longitude: 30.1854° / -91.0188° (Map)

Speed/Course 6.6 knots / 328* Last Known Port: NEW ORLEANS

Info Received: 0d 0h 4min ago (AIS Source: 396)

Itineraries History

Voyage Related Info (Last Received)

Draught: 3 m Destination:

Info Received: 2013-10-15 04:10 (0d, 0h 4min ago)

Recent Port Calls:

No Records Found

Ex Names History

No Records Found

Popping Up in Dallas?

AIS protocol: A big mistake

- Designed in a "hardware-epoch"
- Hacking was difficult and cost expensive
- No security mindset
 - No authentication, no integrity check

- 2014: Craft AIS signals?
- Let's do it via software (SDR)!
 - Reduced costs and complexity
 - Increased flexibility
- Accessible to many. Including pirates!

AISTX

 Designed and implemented a software-based AIS transmitter based on GnuRadio

AIS Frame Builder Block

Figure 4: Detail of the AIS Frame Builder block.

Radio-Frequency Evaluation

Category	Threat	SW	RF
Spoofing	Ships	✓	√
	AtoNs	✓	✓
	SARs	✓	✓
	Collisions (CPA)		✓
	Distress Beacons		✓
	Weather Forecasting		✓
Hijacking	Hijacking	✓	√
Availability Disruption	Slot Starvation		√
	Frequency Hopping		✓
	Timing Attack		✓

Testing Lab [1/2]

Testing Lab [2/2]

Attacker [SX] – Victim [DX]

Spoofing in RF

Example: static and dynamic reports for a ship

easyTRX2 Programming Tool								_ u		
File	Help Data (Columns								
Static data Diagnostics Sent data Received data SD-Card CPA-Alarm Anchor-Alarm										
Class	MMSI	Ship Name	Call Sign	SOG	COG	Latitude	Longitude	Last Report	Bearing	Range
Α	247320160	F00	F00	100 kn	83°	43° 01.2000' N	008° 46.2000' E	0:01	177°	165.2 nr

Figure 5: The EasyTRX2 monitoring tool correctly interpreted our spoofed vessel.

Trigger SOS

- Fake a "man-in-the-water" distress beacon
- Trigger SART (S.O.S.) alerts, visually and acoustically
- Mandatory by legislation
- Lure a victim vessel into navigating to a hostile and attacker-controller sea space

```
$ ./AIVDM_Encoder.py -type=1 -mmsi=970010000
-lat=45.6910 -long=9.7235
| xargs -I X ./AiS_TX.py -payload=X -channel=A,B
```

Listing 4: Distress beacon (SART) spoofing in radiofrequency.

Trigger SOS

Trigger CPA alerts

- Fake a CPA alert (Closest Point of Approach)
- Trigger a collision warning
- Possibly alter course

$$\begin{cases}
T_{CPA} = \frac{-w(t_i) \cdot (S_r - S_s)}{|S_r - S_s|^2} \\
D_{CPA} = |w(t_i) + T_{CPA}(S_r - S_s)|
\end{cases}$$

Availability Disruption Threats

Frequency Hopping

- Disable AIS transponders
- Switch to non-default frequencies (RX/TX)
- Single or multiple target(s)

- Program a desired targeted region
 - Geographically remote region applies as well
- For example: Pirates can render a ship "invisible" upon entering Somalia

Frequency Hopping

Slot Starvation

- Disable AIS on a large-scale
- Impersonate port authorities to:
 - Fake a nearby base-station
 - Reserve all TDMA slots 2250 Stots -0 25ms timeout minutes = increvent = 0 25 50 75 100 18 150 175 20 20 250

Slot Starvation

Step 1: Base-station spoofing

Slot Starvation

Result: Target's Console

Timing Attack

- Instruct an AIS transponder to delay its transmission in time
- Default broadcast time:
 - Static reports = 6 min
 - Dynamic reports = 0.5 to 3 min (depending on speed)
- Attack code:

Listing 1.6. Example of availability disruption by timing attack.

Bonus (Additional Threats)

AIS as Attack Vector

- AIVDM messages are exchanged and processed at application layer by back-end software
 - In VTS server installations
- Binary message, special type used for
 - Crew members, Number of passengers
 - Environment information
- Malicious payloads, e.g. BOF, SQLi, ...

AIS as Attack Vector

SQL Error in back-end processing

Tampering with GPS

- Differential Global Positioning System (D-GPS)
 - Used by port authorities to increase the precision of traditional GPS (MTs → CMs)
- Attack = Spoof D-GPS beacons to force ships into calculating a wrong "GPS position"!
 - Message 17: GNSS broadcast binary message
- Related work "UT Austin Researchers Spoof Superyacht at Sea" – Monday, 29 July 2013

Proposed Countermeasures

- Anomaly Detection to data collected, e.g. by VTSs
 - Detect suspicious activities, e.g. unexpected changes in vessels' route or static information.
 - Correlate with satellite information to find incongruities
 - Works well, but does not protect agaist RF-specific threats
- X.509 PKI: Digital certificates issued by official national maritime authorities
 - Noteworthy stations' certificate (e.g., VTSs) pre-loaded via onshore installations, e.g. when a ship enters a port
 - Generic or previously unknown certificates are exchanged with nearby stations on demand (i.e., vessels in navigation)
 - Vessels with satellite Internet access can retrieve the certificates from online services.

Take Home

- AIS is a major technology in marine safety
- AIS is widely used mandatory installation
- AIS is broken at implementation-level
- AIS is broken at protocol-level

 We hope that our work will help in raising the issue and enhancing the existing situation!

Take Home

- AIS is a major technology in marine safety
- AIS is widely used mandatory installation
- AIS is broken at implementation-level
- AIS is broken at protocol-level

 We hope that our work will help in raising the issue and enhancing the existing situation!

Thanks!

Code available at: https://github.com/trendmicro/ais

{name_surname}@trendmicro.com | @embyte

