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1. Introduction 

A sort of virtualization appeared four decades ago to perform multi-programming and 

simple time-sharing tasks inside a single mainframe. Virtualization became quickly the 

solution to limit cost and save money by server consolidation: aggregate the workload 

of several under-utilized servers to fewer machines reduces hardware and management 

resources. Nowadays virtualization is a “hot topic”, being habitually adopted in develop 

environment for testing and debugging purposes.  

A novel paradigm to secure personal computers is presented. Virtualization creates 

inside a second operating system (security shell) an isolated and encapsulated 

environment, in which the user system is moved and protected. The security layer is 

decoupled in this inaccessible system that, through special services, ensures the user 

environment’s tamper resistance. The security policies defined by administration are 

deployed from a central site to the single computer and locally enforced.  

While conventional personal antivirus can be switched off, manipulated, or avoided by 

sophisticated malign codes and technically experienced users, the antivirus designed in 

the security shell enforces a continuous protection of the user environment, against 

viruses and malware.  

Three complementary services are run: the virtual disk is scanned on demand or 

together with computer start-up and backup policies; the network connections 

established over embedded and removable devices, as well as encrypted protocols, are 

inconspicuously inspected before reaching the user environment; and the file-system 

accesses to disk and removable mass-storage are scanned for real-time viruses.   
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The latter component (on-access scan) analyzes the content of files as they are accessed 

by the virtual environment. A special driver installed into virtual machine intercepts the 

disk operations and builds a logical representation of files’ structure. With the read 

access of an application or a system service, a reference to involved blocks is inserted or 

looked up in a cache. The antivirus uses the cache’s information to address the data for 

scanning. This cache should be efficient and fast enough to not waste memory or 

“bottleneck” the user system. At the same time, a robust cache avoids hangs and 

problems of synchronization and inconsistency. 

Further existing security technologies benefit of virtualization, e.g. disk encryption. An 

embedded layer encrypts inconspicuously the user system, requiring no configuration or 

encryption support. A pre-boot authentication secures the access to whole personal 

computer. 

 

1.1. Motivations 

The goals of information security are described by the CIA paradigm, in terms of 

confidentiality, integrity, and availability. Confidentiality is defined as “ensuring that 

information is accessible only to those authorized to have access” and is traditionally 

represented as a relation between user and system. Cryptography is usually used to 

protect the confidentiality of stored and transmitted data. 

Integrity is the system’s ability to protect information from unauthorized modifications. 

In particular, this attribute assures that transmitted data are not altered and that the 

sender is who it is supposed to be. The encryption’s digital signature and hashing are 

traditional solutions to provide integrity. 
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Availability is the system’s capacity to offer to user a sure and immediate access to own 

resources: data and services have to be immediately available when required. 

Redundant network architecture, high-availability protocols, and hardware with more 

failure points ensure this attribute.  

 

The CIA paradigm, despite of its linear and simple definitions, represents an “ideal 

world”; in real applications, complex and obfuscated issues arise and security is an “a 

priori” lost challenge. No solution establishes a complete protection against threats 

crashing against the computer infrastructure: unqualified users, newbie, evil users, 

viruses, and worms try out constantly the computer’s CIA triad. Many scenarios can be 

proved. 

 

When a laptop is lost or stolen, any information is easy to be extracted by passing any 

form of authentication: the hard disk can be installed into a second computer for being 

read, or the system can be started with a “live-CD” and data accessed. Disk encryption 

is considered a good solution to protect the confidentiality of personal computers, where 

the operating system offers this feature. However, quite few of them enable complete 

disk encryption1, as metadata resources, temporary files and swap partition, and 

commercial products are often too expensive solutions to be adopted. 

                                                 

1 E.g. Windows 2000, 2003 and XP support just a simple “file-system encryption” enabling specific 

folders and file to be encrypted, while the new Windows Vista embeds a “disk encryption” features 

termed BitLocker. 
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Encryption is used in network communications too, where special tools (e.g. sniffers) 

permit to an evil user to intercept the transmitted data and analyze it for confidential 

information as account, email, and credit card number. VPNs and cryptographic 

protocols as TLS/SSL are widely used for secure transmitted information’s 

confidentiality and integrity. On the other hand, encrypted streams (especially those 

“handled” at application-layer) are not protected against viruses and malware because 

their content cannot be analyzed by the antivirus located in the network sub-layer.  

Virus protections are threatened by user acts too: personal antivirus can be switched off, 

manipulated and avoided by intelligent malign codes and technically skilled users, so 

that the system stays unprotected and exposed to easy threats and attacks. 

System confidentiality could be compromised just by a single “click” that involuntarily 

connects the user to “untrusted” networks: usually, computer users are not technicians, 

so they could be easily cheated for using special crafted hotspots configured as traps, 

and sending confidential information to them. User data is stolen and confidentiality is 

violated. 

Similarly, personal firewall could be badly tailored by unqualified users that react 

inadequately to the firewall’s “questions”. In fact, the firewall filters the network 

connections using an application access-list interactively populated via user interaction: 

once a specific application is user-permitted, all traffic “related” to it is accepted. 

Nimbly, a negligent and distracted user’s behaviour exposes the system to risks as 

remote exploiting and denial-of-services. 

Protecting network usages is a primary need as well as enforcing a strict control of 

devices. The ability of users to add new hot-plug hardware, such as USB-sticks, does 
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not only make computers harder to maintain when users use them to install unsupported 

hardware, but they can pose threats to data security. A malicious user can potentially 

use a removable storage device to steal confidential information. An attacker also could 

“autorun” custom scripts stored on the device, installing malicious software such as 

spyware and Trojan-horses. 

 

Virtualization is the answer to these security issues. Decoupling the security layer from 

the user system into an isolated and hardened shell prevents the exploiting of security 

functions and the subverting of security policies. Attacks to the CIA paradigm are 

inhibited: evil users, viruses, and malware acting with “administrator privileges” are 

inoffensive. By virtualization, the security services are not directly attackable, unless 

the security shell is compromised. In this way, the user environment is constantly 

monitored and secured from a set of external services. 

 

This thesis is organized as follows. In chapter 2, the conventional application of 

virtualization technology and its new paradigm to secure personal computer are 

presented. In chapter 3, the novel antivirus approach is illustrated. The next three 

chapters deepen design and implementation of this virus protection: image scan, on-

access scan, and network scan components are described. Chapter 7 proposes disk 

encryption as an evident benefit of coupling virtualization with existing security 

technologies. The last chapter summarises main challenges and open issues.  
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2. Security by virtualization 

2.1. Introduction to computer virtualization 

Computer virtualization allows running multiple operating system instances 

concurrently on a unique host computer, decoupling the hardware requirements from a 

single system and making it available to the whole “community” of operating systems. 

The virtual OS is managed by a special Virtual Machine Monitor (VMM) application, 

located between hardware and guests that provides a layer of abstraction for the 

computer hardware. Virtual machines create virtual devices as CPU, memory, network 

and storage to assign to the guest OS. By virtualization it is possible to control the 

access to hardware devices, enabling specific sets of devices for each guest OS. For 

example, it is possible to assign network devices to a system operating via network and 

hide them from a local one. At the same time, the second guest would require access to 

USB devices and multiple processors for heavy computational application. Virtual 

machines can provide the illusion of hardware, or hardware configuration that is not 

installed (such as SCSI devices) and be used to simulate special network infrastructures 

and scenario, for distributed applications.  

Virtualization allows limiting and controlling the resources assigned to each guest. This 

distribution eliminates the danger of a single runaway process, consuming all available 

memory or CPU. On the other hand, it permits to assign more resource to greedy 

systems for specific applications. Since the guest is not bound to the hardware, it 

becomes possible to dynamically move an operating system from one physical machine 

to another. As a particular guest OS begins to consume more resources, during a peak 
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period, the offending guest can be moved to another server with less demand. With 

virtual deployments, it is possible to relocate an operating system to receive the 

resources needed at that time. 

 

Virtual machines have been historically used for server consolidation purpose, 

aggregating the workloads of several under-utilized servers to fewer machines, perhaps 

a single machine. Nearly all mainframes have the ability to host multiple operating 

systems and thereby operate not as a single computer but as a number of virtual 

machines. In this role, a single mainframe can replace dozens or even hundreds of 

smaller servers. Sometime, the need of running legacy applications that does not run on 

newer hardware/OS and require very few resources is served well by virtualization 

technology. Benefits are related to saving hardware resources, reducing installation, 

management, and administration costs, while providing greatly improved scalability and 

reliability.  

 

Virtualization provides independent and isolated environment, for running operating 

system with different levels of trust or critical applications. When a guest is virtualized, 

the hardware devices and resources are confined and protected; no interaction among 

different guests or host computer is possible. In the newer system, as Microsoft Vista, 

the virtual machine is loaded on the fly, creating such an execution environment 

dynamically, for encapsulate components considered vulnerable, as internet browsers 

and relative downloads.  
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Virtualization is also important to developers. Operating system’s kernel occupies a 

single address space, which means that a failure of any driver results in the entire 

operating system crash. Using a virtual machine is possible to debug a kernel code 

similar to a standard application, restarting the execution from the host system. It is also 

possible to intercept device accesses, debugging their usage.  

 

History and types 

A sort of virtualization has been used since four decades ago, when Compatible Time 

Sharing System developed by the Massachusetts Institute of Technology was adapted 

for the IBM 704 mainframe. This system, splitting the CPU time in quantum (atomic 

entities assigned to single work), permitted the concurrent execution of multiple task, as 

independently user shells. IBM understood the importance of concurrency, offering 

much more services while keeping the same hardware and succeeding in cost reduction 

optimization. The virtualization as it is known to us was implemented in the Model 67, 

where all the hardware interfaces where virtualized through a Virtual Machine Monitor. 

In the following years, quite many approaches to virtualization were proposed, and 

nowadays the same results are achieved in several ways through different levels of 

abstraction. Among all, at least the following four types are remarkable: 

- hardware emulation consists in emulating the complete set of CPU instructions for a 

desired architecture. With this approach it is possible to run unmodified operating 

systems intended for a different platform, for example ARM on an x86 processor 

host. Hardware emulation is used for firmware development: rather than wait until 

the real hardware is available, hardware VM supports the validation of many aspects 
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of the actual code in simulation. The trade-off is a significant performance hit: in 

fact, modelling a fairly complete architecture in software is extremely slow. Bosch1 

is such a kind of emulator; 

- full (native) virtualization, known briefly as virtualization, uses a virtual machine 

monitor that mediates between the guest operating systems and the native hardware. 

Certain protected instructions must be trapped and handled within the VMM because 

the underlying hardware is not owned by an operating system but is instead shared 

by it through the VMM. Unmodified operating systems are run; the underlying 

hardware must be natively supported. The full virtualization is a good trade-off 

between performance and capabilities; currently it is the most used type of 

virtualization (VMWare2); 

- para-virtualization is the most recent approach, currently supported by many vendors 

as XEN3, and consists in integrating the virtualization-aware code into the operating 

system itself, increasing the performance nearly to that of a native system. The 

disadvantage is that para-virtualization requires the guest operating systems to be 

modified for the VMM. Intel and AMD recently support this technology in 

hardware4, permitting extremely fast execution of unmodified guests. Para-

virtualization it is expected to be the solution for future; 

                                                 

1 Bosch IA-32 emulator is freeing downloadable from http://bochs.sourceforge.net/. It’s Free Software 

2 VMWare virtualization, http://www.vmware.com/ 

3 XEN software homepage is http://www.xensource.com/ 

4 Intel VT (http://developer.intel.com/technology/virtualization/index.htm) and AMD Pacifica 

(http://enterprise.amd.com/us-en/Solutions/Consolidation/virtualization.aspx) 
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- APIs virtualization: since applications generally run in user sub-layer and 

communicate with the OS via a set of APIs, this strategy consists in intercepting and 

emulating the behaviour of this APIs using facilities in the existing OS. A pleasant 

side effect is that application binaries can be run natively. On the negative side, this 

approach works for running a single application or operating system, for which a 

special implementation has been done. Wine1 is a well-known project making use of 

APIs virtualization for running Windows applications. 

 

Performance test
2
 

This section presents the result of a performance test run on five different virtual 

machines3, in which the Innotek VBOX 1.1.6 product has been used as reference and a 

standard personal computer4 configuration has been adopted.  

                                                 

1 Wine project homepage is http://www.winehq.com/. It’s Free Software 

2 Pass Mark Software Pty Ltd, Performance Test 6.0, http://www.passmark.com/ 

3 The evaluated VMM are: 

- Innotek VBOX, Version 1.1.6 (18 April 2006) and 1.1.10 (28 July 2006) 

- VMWare Workstation 5.5.1 (build-19175) 

- QEMU 0.8.2 (22 July 2006) with and without accelerator (KQEMU) 

4 The personal computer is configured with: 

- Processor: Intel(R) Pentium(R) 4 CPU 2.80GHz (5630.34 bogomips) 

- Memory: 1Gb RAM (Windows has been virtualized with 256Mb RAM) 

- Hard disk: Maxtor 4D040H2, 40Gb, 2Mb Cache, UDMA-100 

- VGA card: Elsa Erazor III LT equipped with a RIVA TNT2 Model 64 
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All the virtual machine suites have accomplished good results regarding the CPU and 

memory management, while the 2D marks are in average worse. However, the bad 

graphic result could be acceptable for standard computer applications, as office and 

internet, where the system is presumed to run.  

Globally the VMWare suite and newer version of VBOX ran quite well, losing 

respectively 22% and 33% of performance in comparison with a native Windows. 

QEMU is much more slowly, especially when the accelerator module is not enabled. 

Anyway, this product has represented a good software asset for research and test 

purposes: the free license has permitted to hack the code, integrating QEMU in antivirus 

service. In particular, QEMU has been modified to handle antivirus cache’s structures. 

Completed the research phase, commercial solutions will be adopted, integrating a 

faster and more reliable virtual machine.  
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Figure 1 - VMM performance test  

 

2.2. Virtualization approach to security 

Information that once has been stored exclusively on mainframes is now distributed on 

the network among several personal computers. Thin clients that were used to access 

central managed resources are now equipped with a robust workspace: local 

applications and data. The high costs that have compelled for asset aggregation are no 

longer a constraint to many single installations. Virtualization that has traditionally been 

used for server consolidation purposes is here involved in securing personal computers. 
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The security of the whole computer infrastructure is achieved by protecting each single 

host through a local virtualization. 

 

Virtualization makes it possible decoupling security services and user environment: 

security is deployed in a separate second operating system (security shell), over which 

the user system runs virtualized. Virtualization creates an isolated and encapsulated 

environment that protects the user system by various services of the security shell. This 

detached shell is invisible and inaccessible from the top, and the user environment 

behaves just as a standard personal computer with a hidden security sub-layer. 

 

 

Figure 2 – The new virtualization paradigm 

 

Securing the user system from an isolated sub-layer ensures its tamper resistance: not 

even a privileged user can exploit the system’s security functionalities placed into a 
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hidden and decoupled environment. In fact the interaction with the security shell is 

handled via especially protected channels: the user control center as interface for the 

user and the security agent to communicate with the central management system. 

 

The security policies define the valid behaviour of the user system and are distributed 

from a central site to each single computer, where the local agent is responsible to 

enforce them through various security services embedded into the shell. Numerous 

aspects of security can be hardened by administrators. A network connection component 

enforces a real-time firewall, limiting the access to trusted network resources. The 

antivirus, as will exhaustively presented in the next chapters, performs a continuous 

virus protection of the user system for viruses and malware coming over disparate 

channels as networks and removable mass-storage devices. The image scanning should 

be performed offline to avoid inconsistency problems. For this reason, it is usually 

coupled with the boot and backup processes.  The disk encryption feature secures 

computer against theft and loss, while protecting data confidentiality from unauthorized 

access. Encryption is realized automatically and inconspicuously to user-system in 

which no configuration or encryption support is required. Encryption’s keys could be 

managed remotely, enabling a secure recovering procedure. The virtual machine is 

extended with a device control mechanism that wraps the removable device usage and 

avoids a malign use, e.g. installing illegitimate software or stealing confidential 

information. 
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Figure 3 - Security and system management 

 

Virtualization enables the homogeneous management of disparate personal computers 

by hiding the differences among user systems with a standard interface: Windows, 

GNU/Linux, or Solaris run over the security shell for being together managed. The 

management of system- and security- components can be tightly integrated into the 

same interface. Different policies, regarding security and system, could be aggregated 

and deployed at the same time.  
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3.  Virus protection 

Personal computers, in particular those configured with the Windows OS, are 

increasingly threatened by viruses and malware, spreading over email, http download, 

and external mass-storage devices, such as USB-sticks and floppy disks. The worldwide 

spread of Microsoft applications and standard Internet suites has encouraged virus 

coders to consider them as preferable targets, obtaining more visibility and damages. 

For many years, the answer of antivirus software houses has been personal antivirus, 

tailored for the user environment and installed as system service.  

 

Since malign code’s classification is nowadays quite confused due to the rapid 

evolution of threat techniques, here is given a personal and simple taxonomy, used as 

reference of the rest of work. A virus is a computer program that distributes copies of 

itself, installing itself in special locations executed at computer power-on, as the hard 

disk boot sector and the init scripts of operating system, or infecting clean files as 

binaries and word documents (macro virus); the virus should be executed to become 

dangerous. A malware represents a larger class of evil software, mostly spread over 

network channels and infect remote computer exploiting known vulnerabilities. To this 

category belong worms, as portable codes using computer networks and security flaws 

to create copy of them self, spywares and diallers that are unwanted advertising-

supported software, activated automatically to present advertises or dialup premium-rate 

numbers, and Trojan-horses, “back-doors” that consent hidden connections to infected 

computer.   
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In conventional virus protection, an antivirus driver lies into the operating system as 

kernel service, integrated between system libraries and file-system layer. The personal 

antivirus console is used for its management from the user environment. This driver 

intercepts operations on files, coming from the user environment over the WINDLL on 

the file-system. At each reading access, application’s code execution is temporarily 

arrested and the involved data blocks are virus scanned. After it, the scanner releases 

those blocks.  

 

 

Figure 4 - Personal antivirus approach 

 

In today’s threat landscape, personal antivirus alone in the user environment is an 

insufficient protection. Since it can be switched off, manipulated, or avoided by 

intelligent malign codes and technically skilled users, the system becomes unprotected 

and exposed to easy threats and attacks, compromising both user and network security. 
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Figure 5 – Novel antivirus approach 

 

In contrast to personal antivirus, the solution discussed here uncouples the virus 

protection from the user OS into the separate, invisible and inaccessible security shell 

(secureOS). Virtualization is used for the separation of the two systems. The antivirus 

components are administrable by the user, through the secure communication channel 

of the user control center. For this reason, the security shell should be hardened against 

attacks and unauthorized accesses.  

This virus scanner is therefore not directly attackable from the top by evil users and 

malicious codes: voluntary shutdown or protection-avoiding are no longer conceivable. 

The user system is continuously inspected for viruses and malware coming potentially 

from different sources, as network connections and mass-storage devices, warranting a 

steadily high security protection.  

 



 23 

 

Figure 6 - Novel antivirus design 

 

A security agent oversees the antivirus service, deploying the antivirus policy defined at 

central side, and managing the communication to the user. The user system is protected 

against threats coming over network channels and mass-storage devices. Moreover, the 

system is regularly scanned and virus-free backups are guaranteed. Three classes of 

antivirus services are achieved: 

- image scan: the virtualized system, including Windows core components, 

applications and user documents, is fully scanned at user demand, computer boot 

(shutdown), or in conjunction with backup policies; 

- on-access scan: this innovative feature realizes a virus protection of files at access 

time. With the reading access of an application and a system service on the file-
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system, the involved data blocks are examined by the security shell. A customized 

driver, installed into the virtual machine, intercepts the virtual disk’s operation and 

builds a logical representation of the file’s structure. This permits to scan its content 

as it is accessed by the user;  

- network scan: the security shell embeds a sort of transparent proxy that inspects any 

TCP/IP connection’s data, such as email and http download, before it reaches the 

user environment.  Encrypted streams like VPNs and SSL-enabled protocols are 

scanned too. Network scan protects both the local computer and connected LAN 

segments from viruses and malware.  
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4. Image scan 

Image scan allows to virus-scan a completely virtualized operating system by the 

security shell, including the user’s applications, configurations, and personal data. 

Image scan permits to secure backup copies, cleaned from virus infections, in order to 

restore the entire user environment if compromised; it could be seen as a security 

feature applied to the snapshot technology. Moreover, image scan can be integrated in 

the computer boot to assure system cleanness, and in the shutdown to avoid time 

wasting. In fact, a mandatory shutdown prevents inconsistent states. During the scan 

activity, the disk image could become easily inconsistent with the real content, due to 

the possible modifications carried out by the user environment. On the contrary, the 

antivirus “reparations” to the disk’s content could damage the state of the user system. 

  

The user system resides on a virtual disk, represented within the secureOS as a unique 

file, whose size is the same of the emulated disk drive. The first partition (C:) begins at 

the 63rd sector, while the preceding contain the MBR and the partition table, as in a 

normal hard disk structure; afterwards, the disk image could contain additional 

partitions. This type of disk image is known as raw-format, and it is the simplest one: 

data are written serially and the file is directly managed from the kernel driver as a 

normal hard disk. For its simplicity, the raw-format is immediately accessible from any 

GNU/Linux system.  

The fdisk command shows the structure of the VM image, which contains a single 

NTFS Windows image of 3GB (3140896 blocks): 
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# fdisk -l -u marco.img 

Disk marco.img: 0 MB, 0 bytes 

128 heads, 63 sectors/track, 0 cylinders, total 0 sectors 

Units = sectors of 1 * 512 = 512 bytes 

 

            Boot    Start        End      Blocks   Id  System 

marco.img1   *        63     6281855     3140896+   7  HPFS/NTFS 

 

Other advanced formats have better performance, but are more complex to handle and 

to debug. The QEMU software community has developed an advanced image format 

called QCOW1, which provides a smaller file size, even on file-systems that do not 

support holes (e.g. sparse files), optional zlib2 based compression and AES3 encryption. 

However, neither compression nor encryption are required, since personal computers 

normally run a single guest operating system and the entire secureOS (in which the VM 

image is stored) is already encrypted. For these reasons, the raw-format has been used, 

as confirmed by the qemu-img command: 

# qemu-img info /secunet/marco.img 

image: /secunet/marco.img 

file format: raw 

virtual size: 2Gb - disk size: 2Gb 

 

                                                 

1 The QCOW Image Format, http://www.gnome.org/~markmc/qcow-image-format.html 

2 Zlib compression library, free-software, http://www.zlib.net/ 

3 Advanced Encryption Standard (AES) block cipher 
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Linux comes with FAT read-write and NTFS read-only file-systems support, permitting 

to mount Windows partitions in a secure way. By kernel the device loop-back 

mechanism1 and the device driver capabilities, the Windows image is associated to the 

loop0 device (the first partition starts after 63*512 bytes), and subsequently mounted 

under /mnt/winOS as read-only: 

 

# losetup -o $((63*512)) /dev/loop/0 /secunet/marco.img 

# mount -o ro /dev/loop0 /mnt/winOS/ 

 

Once Windows image is mounted, the entire user system can be access from the 

security shell as a local file-system to be virus scanned.  

 

 

Clamavis2 antivirus has been used for research and test purposes. This toolkit is 

distributed as open source and can be modified due to its Free license. The engine 

framework (the libclamAV library) has been adapted and integrated in the on-access 

scan. The clamscan virus scanner has been used in the image scan research.  

Clamavis have run on a standard personal system, configured with Microsoft Windows 

XP and Office, for a size of 2G, and has taken about a quarter of hour. The test 

environment is virus-free. 

 

                                                 

1  Device node that represents a regular file, http://en.wikipedia.org/wiki/Loop_device 

2  ClamAV project homepage is http://www.clamav.net/ 
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# clamscan --verbose --recursive --log FULL-SCAN.log /mnt/winOS/ 

/mnt/winOS/AUTOEXEC.BAT: Empty file 

Scanning /mnt/winOS/boot.ini 

/mnt/winOS/boot.ini: OK 

Scanning /mnt/winOS/bootfont.bin 

/mnt/winOS/bootfont.bin: OK 

/mnt/winOS/CONFIG.SYS: Empty file 

/mnt/winOS/MSDOS.SYS: Empty file 

Scanning /mnt/winOS/NTDETECT.COM 

/mnt/winOS/NTDETECT.COM: OK 

[...] 

----------- SCAN SUMMARY ----------- 

Known viruses: 76052 

Engine version: 0.88.4 

Scanned directories: 593 

Scanned files: 7325 

Infected files: 0 

Data scanned: 2214.39 MB 

Time: 980.635 sec (16 m 20 s) 

 

From a careful analysis, a big problem arises and forces Windows to temporary 

hibernation1, during the full image. 

                                                 

1 Hibernate is a feature seen in many operating systems where the contents of RAM is written to non-

volatile storage, such as the hard disk before powering off the system. Later the system can be restored to 

the state it was in when hibernating, so that programs can continue executing as if nothing happened. 

From http://en.wikipedia.org/wiki/Hibernate_(OS_feature). 
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When the Windows image is mounted with the mount command, the Linux’s VFS 

Layer1 accesses the loop-back device (/dev/loop0 in example) and builds an appropriate 

cache for data currently available on the image. Therefore, through a secure and sturdy 

mechanism, the user system is available as a local file-system to the secureOS 

environment for reading/writing operations. Processes can safety access the image’s 

data from this location, by VFS layer. 

 

 

Figure 7 - Linux Virtual File-system (VFS) 

 

                                                 

1 Virtual file-system is a kernel software that handles all system calls related to a standard Unix file-

system. Its main strength is providing a common interface to several kinds of file-systems. 
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However, whatever an external process modifies the image, the antivirus cache becomes 

immediately inconsistent. For example, when a file is created/modified by the user 

system, the virtual machine updates the image’s content and the Windows file-system 

layer is correctly updated to address the new data location. The antivirus cache, instead, 

cannot be updated: the writing has been done on the disk, skipping the Linux virtual 

file-system. Therefore, new files are not addresses from the security shell: they 

physically exist on the image file, but are completely invisible to a list command.  

The following test shows how a bar.txt document is accessible only after remounting 

user image: 

 

# ls -l /mnt/winOS/Dokumente\ und\ Einstellungen/embyte/Desktop/ 

-r-------- 2 root root 0 2006-09-26 14:02 foo.txt 

# mount -o remount /dev/loop0 

# v /mnt/winOS/Dokumente\ und\ Einstellungen/embyte/Desktop/ 

-r-------- 2 root root 11 2006-11-17 14:40 bar.txt 

-r-------- 2 root root 0 2006-09-26 14:02 foo.txt 

 

Any file-system operation realized from Windows, as file creation, modification, 

movement, deletion, is not captured from the security shell.  

 

Due to the large time required by the image-scan, this condition of inconsistency is not 

acceptable, because it easily generates read failures. New viruses, malware, and infected 

files are not identified, reducing antivirus protection and effectiveness.  

Moreover, when a virus is found and the antivirus tries to repair / delete the infected 

data, possible file-system corruptions (loss of files) could occur, compromising user 
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documents and the entire Windows system! If a writing occurs on the image while 

Windows is running, the NTFS cache becomes inconsistence and serious data losses 

occur. 

 

To prevent unwanted problems, Windows system must be hibernated before an image-

scan and it must be restarted as soon as the AV have finished. The image scan must run 

offline. A graphical interface should be prompted to the user, with information 

regarding the scan process (at least a progress bar and some status lines).  

Alternatively, a scan could be accomplished during the Windows start-up (and/or 

shutdown) to assure the system’s cleanness; it is sufficient to modify the boot (halt) 

sequence, introducing the security check of Antivirus before (after) the VMM start 

(stop).  

In addition, the integration with the backup service is hypothetical. Image scan permits 

to secure backup copies from virus infections, in order to restore the entire user 

environment if compromised; it could be seen as a security feature applied to the 

snapshot technology.  
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4.1. File repair 

Up to here, it has been discussed how to scan the entire user system, transparently and 

efficiently from the security shell in order to discover the existence of viruses and 

malware. The image file is simply mapped to a loop-back device and mounted 

somewhere in the secureOS file-system. To prevent unwanted error conditions, such as 

synchronization problems and data losses, the image must be scanned offline, 

prompting the user with an informative GUI and integrating the image scan with backup 

or boot processes. 

 

However, what happens if a virus is found or a file is marked as infected? The antivirus 

normally offers the possibility to delete and to repair infected files. Otherwise, when 

viruses compromise a healthy file, the virus code is added to the original file somewhere 

not known before. Some bytes can also be overwritten and substituted with malign ones. 

Often, infected file appears more as garbage than meaningful information, making the 

file repair process much harder. Virus-files instead are completely malign code and 

should be immediately removed by antivirus. 

Because of the difficulties to repair infected files (clean malign code and rebuild a 

healthy file), Clam antivirus does not provide this file repair feature. Instead, it offers 

the possibility to remove infected files and viruses (by the command line -remove 

option). This should be carefully used, because it implies the possibility to delete 



 33 

healthy files when a false positive occurs. The same problem occurs in Network IPS1, 

where network connections are dropped down when an exploit signature is matched. 

This issue is widely studied in both Antivirus and Intrusion Detection System research 

areas.  

 

Clamscan has been tested with “EICAR Standard Anti-Virus Test File”2 to verify its 

ability to identify and delete viruses and malware. EICAR is a legitimate DOS program 

that produces a sensible result when run (it prints the message "EICAR-STANDARD-

ANTIVIRUS-TEST-FILE!"). It is also short and simple. In fact, it consists entirely of 

printable ASCII characters, so that it can easily be created with a regular text editor. 

Any anti-virus product that supports the EICAR test file should detect it in any file 

providing that the file starts with the following 68 characters, and is exactly 68 bytes 

long: 

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H* 

Clamscan correctly identify and remove EICAR test file: 

# clamscan --verbose --remove eicar-clone.com 

Scanning eicar-clone.com 

eicar-clone.com: Eicar-Test-Signature FOUND 

eicar-clone.com: Removed 

                                                 

1 A Network IDS is a system that tries to detect malicious activity such as denial of service attacks, port-

scans or even attempts to crack into computers by monitoring network traffic and compare it to a well-

known database of attack signatures. A Network IPS is an extension that “reacts” to positive results, e.g. 

dropping the connections. 

2 The Anti-Virus or Anti-Malware test file, http://www.eicar.org/anti_virus_test_file.htm 
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----------- SCAN SUMMARY ----------- 

Known viruses: 77136 

Engine version: 0.88.4 

Scanned directories: 0 

Scanned files: 1 

Infected files: 1 

Data scanned: 0.00 MB 

Time: 1.589 sec (0 m 1 s) 

 

Due to the extreme difficulties of repair infected files, many antivirus go through the 

easier and simpler solution to remove them, immediately. The deletion a file requires 

the file-system’s write support and sufficient account privileges. Therefore, Windows 

image must be mounted from secureOS antivirus agent with read/write support: when 

AV file repair is enabled, Windows file-system (FAT or NTFS) write support is 

required! 

 

The contribution of Free Software community 

As already said in previous paragraphs, Linux integrates special drivers, which permit 

fast, reliable, and secure access to Windows file-systems through the Virtual File-

System architecture. In particular, the current VFAT/FAT32 driver has been rewrite 

from Gordon Chaffee1, researcher in the Berkeley Multimedia Research Centre. The 

                                                 

1 Linux VFAT/FAT32, http://bmrc.berkeley.edu/people/chaffee/fat32.html 
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driver is completely compatible with the Windows native one (full support) and allows 

either read and write operations, as file creation, modification, renaming, deletion. 

On the other hand, the NTFS driver included in Vanilla Kernel-tree1, originally 

established in 1995 by Martin von Loewis and now maintained by the Linux-NTFS-

Project2, features a good read support but partial and experimental write capabilities. It 

allows reading of files and rewriting existing files, but does not support creation of new 

files or deletion of existing files. 

In 2002, S. Szakacsits joined the project, and worked on many areas, among others, he 

engineered ntfsresize that was the first open source NTFS software capable of heavy 

NTFS metadata modifications safely. While A. Altaparmakov rewrote driver and user 

space utilities from scratch, to support the new NTFS versions (Windows 2000 and 

Windows XP), Szakacsits kept working on the open source code base. On July in 2006 

was released NTFS-3G3, a full read-write NTFS driver that represented major 

functional and quality improvement to ntfsmount. NTFS-3G provides safe and fast 

handling of the new Windows file-systems operations, as file/directory creation, 

deletion, renaming, movement, etc... 

 

                                                 

1 Vanilla is the official Linux Kernel, http://www.kernel.org/ 

2 From project homepage http://www.linux-ntfs.org/: “The goals of the Linux-NTFS project are to 

develop reliable and full feature access to NTFS by the Linux kernel driver, and by a user space file-

system (ntfsmount), and to provide a wide collection of NTFS utilities (ntfsprogs) and a developer's 

library (libntfs) for other GPLed programs.“ 

3 The 3rd generation of NTFS driver, http://www.ntfs-3g.org/ 
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At the time of writing this thesis, the 3rd generation of NTFS driver (NTFS-3G) is in 

BETA status and it has not yet been included in Vanilla Kernel-tree. However, no driver 

crashes or data loss was experienced during the last month’s heavy quality testing, so it 

is reasonable to use NTFS-3G write support for remove viruses and infected files during 

antivirus image scan. 

 

The installation of NTFS-3G is quite easy. The driver makes use of File-system 

userspace library (FUSE1), which implements a fully functional file-system as a 

standard program. FUSE is implemented in Linux Kernel as a File-system wrapper to 

the VFS Layer. When a program makes use of the FUSE framework, each file-system 

operation (like the stat() method shown in figure) is redirect from VFS to user-space 

library libfuse that operate as “abstract class” for the user file-system. 

                                                 

1 File-system in Userspace, http://fuse.sourceforge.net/ 
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Figure 8 - FUSE Architecture - The stat() file-system call 

 

FUSE was originally developed to support AVFS and it has become a separate project, 

featuring a simple API, a secure and stable implementation and an easy installation. 

FUSE driver is included in Linux Kernel from 2.6.15 version, and is compiled (fuse.ko 

module) enabling File-system in Userspace support option. NTFS-3G has been recently 

merged in Debian Unstable distribution and it is easily installable via this apt-get 

command: 

# apt-get install ntfs-3g 
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The 3rd generation of NTFS drivers and the excellent native FAT support permit to 

mount Windows partitions, reading and writing safely; file repair is used to remove 

viruses and repair infected files.  

 

This chapter has presented the image scan feature, used to virus-scan the entire 

Windows user system from the lower layer of security shell. Mapping the virtual image 

as a loopback device and accessing by kernel file-system drivers, Linux permits to 

browse and to scan the user file-system. The new NTFS driver has safe writing 

capabilities, enabling the antivirus to remove and to “fix” infected files. To prevent 

inconsistent states, the image scan should run offline, e.g. at computer boot to assure 

system cleanness, or together with a backup process to secure backup copies from 

viruses. In fact, while the system is running, the disk image could become easily 

inconsistent with the real content, due to the possible modifications carried out by the 

user environment. On the other hand, antivirus “reparations” to the disk’s content could 

damage the state of the user system. 
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5. On-access scan 

On-access scan is an innovative idea in the antivirus research field, which aims at 

protecting the user system, while preventing the antivirus to be manipulated. In fact, 

traditional antivirus products could be deactivated, faked, or avoided by intelligent 

malign codes and technically skilled users. On-access scan instead is tamper-proof and 

realizes a continuous virus protection of the virtual OS, real-time scanning the user file-

system operations. 

  

In contrast to the conventional personal antivirus where the protection is realized within 

the user environment, here a virtual machine decouples the security functionalities of 

the Windows system into a separate, invisible, and inaccessible system known as 

security shell, where the antivirus components are moved. The on-access antivirus 

operates from below the virtual disk, supported by a special driver installed into the 

VMM that deploys information regarding file-system operations. This software 

component intercepts each file-system access and builds a logical representation of the 

file’s structure, in order to scan its content. In fact, with the reading of a file, from an 

application or a system service, the file’s data blocks are examined by the security shell. 

 

Encapsulating the on-access scan in this hidden, hardened layer, a constant protection 

against viruses and malware is established, because the security functions cannot be 

manipulated by unauthorized and evil users. “Untrusted” removable devices as UBS-
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stick and standard floppy disks, internet download and temporary/cached files are 

systematically scanned as they are accessed. 

 

 

Figure 9 - On-access scan - idea 

 

From the view of the security shell, the user system appears as an image file of the 

virtual machine, merely as an unstructured list of data blocks. The antivirus component 

interprets this amount of unorganized data and develops a high-level logical 

representation in the context of the security shell. Instead, conventional file-systems 

translate the file representation, known by applications, into low-level information 

directly applicable to the disk. In fact, a file is a logical description for a set of data, 

physically stored as spare blocks on the hard disk and grouped together as linked list of 

blocks (in the following referred to as file structure). 

 

The on-access scan acts oppositely of how a standard file-system works. The Windows 

file-system initially resolves each file operation (reading and writing) into low-level 
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information about the sector’s position and the block’s size (in sectors). Then the 

antivirus driver of the virtual machine intercepts this physical disk access, in terms of a 

single data block, and reverse-resolves it. Since an evil pattern could be positioned 

anywhere in a file, a virus is perceivable only if the whole content is analyzed, that is, 

all the file’s data blocks should be scanned. For this reason, when an I/O operation 

occurs, the interpreter reverse-resolves these blocks into the file, which they belong to, 

and builds the whole list of blocks. 

 

Briefly, the algorithm has been designed according to this model: when a file is read, its 

physical structure is built and cached as a linked list of blocks. The next time the same 

file is accessed, if it has not been moved or deleted, the previous cached structure is 

ready to be used. The antivirus engine retrieves the needed sector information from the 

cache, addresses the file’s data from the virtual disk, and processes it. 

When a file is opened in writing mode, its structure is built similarly and compared with 

the cache’s content. With each writing of the Windows system, the cached structures 

must be modified likewise or entirely replaced to avoid synchronization problems.  
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Figure 10 - On-access scan – global architecture 

 

The challenge is synchronization and performance: different caching strategies affect 

considerably the antivirus’ reliability and speed. Since the on-access scan is an “on-line 

component”, it can generate inconsistent states when the image’s content is modified. 

An infected file shall not be deleted, but replaced with a NULL content and a “read-

error” shall be returned to the user system. That file can be safely removed only off-line.  

Moreover, if the files’ structures are not correctly updated into cache, infinite loops can 

easily turn up, slowing down the Windows execution.  

The performance is improved designing an optimized antivirus cache for handling file 

structures. A self-balancing BST is adopted for its capacity to reorganize the cache’s 

information, to be quickly addressable. Standard operations are much faster then 

conventional trees, when handling non-random data. In fact, in real-world scenarios as 

file-system caches sectors are accessed often sequentially and repeatedly.  
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The caching algorithm speeds up of about two times the on-access scan, by marking 

newly written and freshly modified files with a dirty flag. When a new file is created, or 

at least a single file’s block is modified (added or deleted), the file gets marked and 

considered dirty by the antivirus. When the same file is read afterwards, two alternatives 

occur: if it has been marked the antivirus scans it, otherwise it is simply skipped. This 

simple and sharp approach increases the time performance without losing the antivirus 

efficiency. 

 

The algorithm 

Here a simplified version of the on-access algorithm is briefly presented through two 

block diagrams, showing respectively what happens when a read and write is generated 

by the user system for the virtual disk. In practise, the real implementation uses a 

slightly more complex algorithm, due to the NTFS architecture, still now partially 

obfuscated; windows file-system is closed code and sparsely documented. Moreover, 

the difficulty of debugging strange file-system behaviours entails obvious slowdowns in 

code implementation. For example, efficient caching solutions are ruined when an 

unknown write occurs in the file index table (or MFT1).  

  

In both read and write operations, the antivirus interrupts the user-system execution and 

“reverse-resolves” the accessed block into its correspondent file and block list. 

 

                                                 

1 Reference to next paragraph for a file-system overview, focuses on Windows NTFS file-system. 
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At reading time, the cache is looked against the current read. If the answer is positive, 

the file structure is returned and the dirty flag verified. When the file has not been 

altered in the meantime, the system execution continues; otherwise, the file’s content is 

accessed and scanned.  

If a virus is found, the user is informed with an alarm. The file could also be considered 

damaged and marked for a future deletion. What is done is to replace file’s content with 

NULL content and return a “read error code” to the NTFS file-system. To prevent a 

situation of inconsistency and a guaranteed crash, that file must be deleted only offline; 

the modification of the virtual image from the security shell, when the user operating 

system is running, creates a synchronization problem between the Windows file-system 

and the disk’s content. The well-known Windows’s “blue-screen” indicates the kernel 

panic. After the virus scanning, the file’s dirty flag is cleaned. 

 

When the entry is not cached, the block address is verified against the file index table. 

This area (MTF) contains metadata information, as the file name, its access times, 

permissions, and owner.  If the address belongs to MFT, the block is simply read and 

released to the application. To speed-up file access time, NTFS places file’s content 

directly in the MFT, if less of 1500bytes. The challenge is to understand what particular 

metadata has been accessed and decide if scan it, as should be done for file’s content. 

On the other hand, when an ordinary file’s content is accessed, its structure is build and 

cached with the dirty flag unmarked.  
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The procedure terminates returning the data block or the error code, if a virus has been 

found. The user-system execution resumes. 

 

Read access to 

single data block

Cache lookup

Check AV flag

Found

Scan data blocks 

belonging to file
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Set flag to „clean“

File repair feature

 

Figure 11 – On-access scan – read algorithm 
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For writing operations, the algorithm is shorter: if the involved block is already cached, 

file is considered modified and its dirty flag is marked; otherwise, the file structure is 

build. For new file creations, the file structure is inserted in the cache as new element; 

for modifications and deletions, the cache is upgraded with the new file’s block list. In 

both case the file is marked as dirty. 
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Figure 12 – On-access scan – write algorithm 
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A challenge in cache design is time waste and memory usage: the cache should be at the 

same time fast and requiring low memory for the file’s structure representation.  

The cache is queried each time a block is read and written, looking up if the current file 

is already present and extracting the file’s structure for the antivirus engine. Data blocks 

have been therefore organized in a self-balancing Binary Search Tree (AVL), using the 

first sector of each data block as internal index. Self-balancing structures are considered 

faster compared with normal trees for being able to keep a low tree height. Furthermore, 

AVL subtype is faster in standard operations when dealing with no uniform statistics, 

like when data sets are not random, as sequential or repetitive ones.  

To avoid useless memory consumption, the caching algorithm should be optimized. 

When a file gets modified, enlarged with new content, the antivirus driver intercepts the 

novel blocks and inserts them in the correct position inside cached file structure. It does 

not rebuild a new file’s block list, adding it as double copy to the cache. In similar 

manner, when a portion of file is deleted, the cache is upgraded with the shorted file 

structure, or is completely erased when the file is not present anymore in file-system. 

 

5.1. File organization 

The smallest unit of space on a disk that any software can access is the sector, which 

normally contains 512 bytes. It is possible to have an allocation system for the disk 

where each file is assigned as many individual sectors as it needs (e.g., a 1MB file 

would require approximately 2048 individual sectors to store its data). However, for 

several performance reasons, in NTFS and other most file-systems, individual sectors 

are not used. It can get cumbersome to manage the disk when files are broken into 512-
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byte individual pieces (e.g., a 20GB disk volume would contain over 40 million 

sectors). To keep track of these many pieces of information is resource consuming and 

disk’s fragmentation1 is much more of a problem.  

Instead, the usual solution is to group sectors into larger blocks that are called blocks, or 

clusters. The block size is determined primarily by the size of the disk volume: larger 

volumes use larger cluster sizes. This dimension has an important impact on the system 

performance and the disk utilization: larger cluster sizes result in more wasted space 

because files are less likely to fill up an integral number of clusters. 

 

Each file is stored as a linked list of blocks (file sector chain) and its data content can be 

located anywhere on the disk. The file-system’s main task is to keep track of which 

blocks are assigned to each file, providing its entire content to the operating system (and 

hence to any software applications). The file’s information is recorded and managed 

through a sort of index2 that is usually located at the begin of the partition. Every cluster 

is chained to the next one using a number and it is not necessary to store the whole file 

                                                 

1 Hard disk fragmentation is the degree to which each file is spread around the disk. In the ideal case, 

every file would in fact be contiguous: each cluster it uses would be located one after the other on the 

disk. File-system starts out with all or most of its file contiguous, and becomes more and more 

fragmented as a result of the creation and deletion of files over a period of time. Utilities Have been 

developed that can optimize the disk by rearranging the files so that they are contiguous (this process is 

called defragmentation). 

2 In most file-systems, a file allocation table is used to keep track of which clusters are assigned to each 

file. The operating system determines where a file's data is located by using the directory entry for the file 

and the file allocation table entries. 
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in a single continuous block. In fact, the file’s blocks can be located anywhere on the 

disk, and can even be moved after the file creation. The operating system automatically 

“follows” these file sector chains so that to the user each file appears to be in one 

continuous chunk of disk space. 

 

In the NTFS file-system, every structure is virtually a file, including the structures used 

to maintain the volume’s content and the partition itself. This control information is 

stored in a special metadata file and is initialized when the partition is firstly created. It 

includes items such as the lists of files on the partition, the volume information, and the 

cluster allocations. The Master File Table (MFT) is actually one of these metadata files, 

but in some cases, it also contains descriptions of the other metadata files. The MFT 

contains a record describing every file and directory in the NTFS volume. If a file is 

small enough, its actual content may be stored in the MFT too. Since the metadata files 

are just "files" to NTFS, they too have records in the MFT. In fact, the first 16 records 

of the MFT are reserved for metadata files, as it is shown in the next table: 

 

System file File Name MFT 

Record 
Purpose of the File 

Master file 
table 

$Mft 0 It contains one base file record for each file and 
folder on an NTFS volume. If the allocation 
information for a file or folder is too large to fit 
within a single record, other file records are 
allocated as well. 

Master file 
table mirror 

$MftMirr 1 Guarantees access to the MFT in case of a 
single-sector failure. It is a duplicate image of 
the first four records of the MFT 

Log file $LogFile 2 Contains information used by NTFS for faster 
recoverability. The log file is used by 
Windows Server 2003 to restore metadata 
consistency to NTFS after a system failure. 
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The size of the log file depends on the size of 
the volume, but you can increase the size of 
the log file by using the Chkdsk command 

Volume $Volume 3 It contains information about the volume, such 
as the volume label and the volume version 

Attribute 
definitions 

$AttrDef 4 Lists attribute names, numbers, and 
descriptions 

Root file 
name index 

. 5 The “root” folder 

Cluster 
bitmap 

$Bitmap 6 It represents the volume by showing free and 
unused clusters 

Boot sector $Boot 7 It includes the BPB used to mount the volume 
and additional bootstrap loader code used if 
the volume is bootable 

Bad cluster 
file 

$BadClus 8 It contains bad clusters for a volume. 

Security 
file 

$Secure 9 It contains unique security descriptors for all 
files within a volume 

Upcase 
table 

$Upcase 10 Converts lowercase characters to matching 
Unicode uppercase characters 

NTFS 
extension 

file 

$Extend 11 Used for various optional extensions such as 
quotas, reparse point data, and object 
identifiers 

 12–15 They are reserved for future use 
Table 1 - Metadata files ftored in the MFT 

 

The elegance of the metadata system is that by storing internal information in files, it is 

possible to expand on the capabilities of the file-system. In addition, these files do not 

need to be stored in a specific location on the disk, so if a specific area becomes 

damaged, they can be moved. 

 

The following example helps to understand how a file is organized on disk. The DOS-

interpreter cmd.exe is distributed on the disk volume in four pieces (blocks for 

simplicity) in ranges: 

- from sector 200 to 220 (20 sectors); 
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- from sector 500 to 800 (300 sectors); 

- from sector 1000 to 1100 (100 sectors); 

- from sector 11000 to 11650 (650 sectors) 

 

Figure 13 – File organization on disk 

 

The file is therefore 1170-sectors large and occupies 858KB (assuming a sector size of 

512 bytes). 

 

A file is represented within the antivirus cache in the same way as it is physical 

organized. The file sector chain is implemented as a linked-list and contains three 

pieces of information: the file’s name, the file’s number of blocks and a special flag by 

the antivirus engine to scan the appropriate files. Each list’s node holds the first and the 

last sector of each block.  

 

Using the example, the cmd.exe interpreter is represented as a sector_list, in which the 

filename is cmd.exe and the dirty_flag is 0 (assuming that the file has been just be 

scanned). The list contains four sector_list_entry nodes that are initialized with the 

addresses of the file’s blocks. In particular, because of the fragmentation problem, the 

cmd.exe could be physically written as an unordered sequence. 
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So, when a new list is allocated for the DOS-interpreter, its elements are attached to the 

list in the same order in which the file’s blocks are physically stored on the volume. In 

the same way, when a file becomes larger (smaller), the new blocks are inserted 

(deleted) into the list in the correct order.  It is very important to manage the order 

correctly in order to prevent that the file’s content becomes garbage (the two sentences 

“these files contain the virus don’t” and “these file don’t contain the virus” differs only 

for the position of the “don’t” word, but have two opposite meanings!).   

 

 

Figure 14 - On-access scan - file architecture
1
  

 

                                                 

1 The file’s blocks has been written with this order: 1) block 1000:1100; 2) block 200:220; 3) block 

500:800 and 4) block 11000:11650 
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5.2. Cache design 

Two efficient and common data structures are used to represent data in memory: hash 

tables and self-balancing binary search trees. 

 

Hash tables, sometimes also known as associative arrays, or scatter tables, are data 

structures that offer fast lookup, insertion, and deletion of (key, value) pairs. In a well-

designed implementation of hash tables, all of these operations have a time complexity 

of O(1), rather than the O(n) that linked lists, association lists, and vectors would 

require for some of them. 

Hashing was proposed and first studied and implemented on computers in the early 

1950s, and is based on a simple idea: transform the key to a number (the hash process), 

and then use that number to index a table. In order to keep the table size manageable, 

reduce the computed number modulo the table size. 

Notice, however, that hash functions do not preserve key order: even if keys are entered 

in, say, alphabetical order, they will in general be stored randomly in the table. Thus, 

the extra work of a sorting step may be needed, if key order is to be restored when the 

table is traversed. Moreover, the hash function itself is time-consuming. 

When the keys of more than one item map to the same position, we have a called a 

collision. Collision handling is the price to be paid for the bonus of O(1) complexity, 

and if the mechanism for doing so is poorly designed, performance may well deteriorate 

to O(n), or worse. There are many collision resolution schemes, but they may be divided 

into open addressing, chaining (shown in figure), and keeping one special overflow 

area. Perfect hashing avoids collisions, but may be time-consuming to create.  
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Figure 15 - Hash table showing collision problem 

  

A Tree is defined as a not empty finite set of labelled nodes such that there is only one 

node called the root of the tree, and the remaining nodes are partitioned into sub-trees. If 

the tree is either empty or each of its nodes has not more than two sub-trees, it is called 

a Binary Tree. Hence, each node in a binary tree has either no children, one left child, 

one right child, or a left child and a right child, each child being the root of a binary tree 

called a sub-tree. 

Every node (object) in a binary tree contains two pieces of information. The first one is 

proper to the structure of the tree, that is, it contains a key field (the part of information 

used to order the elements), a parent field, a left child field, and a right child field. The 

second part is the object data itself that can reside inside the tree or outside, referenced 

by the node. The root node of the tree has its parent field set to null. Whenever a node 

does not have a right child or a left child, then the corresponding field is set to null. 

Trees support a set of basic operations, common to any family of trees: 
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- searching for an item (lookup); 

- adding a new item at a certain position on the tree (insertion); 

- enumerating all the items (enumeration); 

- deleting an item (deletion); 

- removing a whole section of a tree (pruning); 

- adding a whole section to a tree (grafting); 

- finding the root for any node. 

 

A Binary Search Tree (BST) is a binary tree with more constraints. If x is a node with 

key value key[x] and it is not the root of the tree, then the node can have a left child 

(denoted by left[x]), a right child (right[x]) and a parent (p[x]). A BSD is a tree with the 

following Binary Search Tree property: 

   1. All nodes y in left sub-tree of x have key[y] < key[x] 

   2. All nodes y in right sub-tree of x have key[y] > key[x] 

The major advantage of binary search trees is that the related sorting algorithms and 

search algorithms such as in-order traversal can be very efficient. 

The basic operations on a binary search tree of n nodes (lookup, insertion, removal and 

sort) take time proportional to the height of the tree, ranging from n in the worse case, 

when the unbalanced tree resembles a linked list, to log(n) in the average case, when a 

complete balanced BST occurs. 
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Figure 16 - Tree degrading to linked list 

 

Self-Balancing Binary Search Trees 

For this reason, self-balancing BST have been studied and proposed as a solution to 

keep tree height, or the number of levels of nodes beneath the root, as small as possible 

at all times, automatically. The height must always be at least the ceiling of log n, since 

there are at most 2k nodes on the kth level; a complete or full binary tree has exactly this 

many levels. Self-balancing BS Trees are one of the most efficient ways of 

implementing associative arrays, sets, and other data structures.  

 

Ordinary binary search trees have the primary disadvantage that they can attain very 

large heights in rather ordinary situations, such as when the keys are inserted in order. 

Self-balancing binary trees solve this problem by performing transformations on the tree 

(such as tree rotations) at key times, in order to reduce the height. Although a certain 

overhead is involved, it is justified in long runs where the time of later operations 

drastically decreases. 

The following figures show the same tree, firstly un-balanced and later after a balancing 

algorithm has been applied; although the tree is the same, operations taken on the 

balanced one require less time. 
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Figure 17 - Example of un-balanced BST 

 

 

 

Figure 18 – The same tree after balancing 

 

Reducing the tree height, using the balancing techniques implemented in the self-

balancing trees, the computational complexity gets reduced of a n/log(n) factor in its 

basic operations. 
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BST 

operation 

Completely unbalanced 

 (linked list) 

Balanced  

(Self-balancing BST) 

Height n log b 

Lookup O(n) O(log n) 

Insertion O(n) O(log n) 

Removal O(n) O(log n) 

Sort O(n) O(n log n) 

Enumeration (In-order 

iteration) 

O(n) O(n) 

Table 2 - Computational complexity of BST operations 

 

Hundreds of self-balancing BST have been proposed to keep automatically tree height 

near log(n). Some well-known implementations are AVL, Red-black and Splay trees.  

 

In AVL-tree, each node has a balanced factor set to the difference of height of its right 

and left sub-trees. A node with balance factor 1, 0, or -1 is considered balanced. A node 

with any other balance factor is considered unbalanced (marked as “illegal”) and 

requires rebalancing the tree, by sequenced rotations. Let X be the deepest node whose 

balance factor has become "illegal".  In this scenario X's balance factor has become too 

large, +2 (the scenario that X's balance factor has become too small, -2, can be handled 

in a symmetric manner.)  This illegal imbalance happened because X previously had a 

balance factor of +1, and the insertion caused X's right sub-tree (headed by Y) to 

increase in height.  This height increase implies that Y had a balance factor of 0, 
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because otherwise either Y would not gain height or Y would become illegally 

imbalanced. This scenario deploys in 2 cases: the insertion is made into Y's right sub-

tree or into Y's left sub-tree. Insertion into Y's right sub-tree requires a single rotation to 

rebalance the tree: 

 

     y       rotate (xy) R        x 

    / \            ====>         / \ 

   x   3                        1   y 

  / \        rotate (xy) L         / \ 

 1   2             <====          2   3 

 

 

On the other hand, when the insertion is done into Y's left sub-tree, a double rotation is 

done: 

            DOUBLE ROTATE (xyz) L 

    x        1. rotate (yz) R    

     \       2. rotate (xz) L       z 

      y          =======>          / \ 

     /                            x   y 

    z       DOUBLE ROTATE (xzy) R 

             1. rotate (xz) R         

             2. rotate (yz) L    

                 <======= 

 

Sleator and Tarjan suggested the Splay-tree as an efficient alternative implementation of 

self-balancing BST that takes advantage of locality in the incoming lookup requests to 

increase data lookup. Locality in this context is a tendency to look for the same element 

multiple times. A stream of requests exhibits no locality if every element is equally 

likely to be accessed at each point (uniform access). For many applications, there is 

locality, and elements tend to be accessed repeatedly. This is truer for caches, where 

groups of data are accessed more frequently than the rest.  
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Whenever an element is looked up in the tree, the splay tree reorganizes to move that 

element to the root of the tree, without breaking the binary search tree invariant. If the 

next lookup request is for the same element, it can be returned immediately. In general, 

if a small number of elements are being heavily used, they will tend to be found near the 

top of the tree and are thus found quickly. 

A splay tree has no explicit balance condition and a special operation (“splay”) is done 

after each search or insertion operation.  Splaying at node x causes node x to become 

the root of the binary search tree through a specific series of rotations as follows. Three 

cases occur: 

   1. X has no grandparent (zig) 

          * If X is left child of root Y, then rotate (XY)R. 

          * Else if X is right child of root Y, then rotate (YX)L.  

   2. X is LL or RR grandchild (zig-zig) 

          * If X is left child of Y, and Y is left child of Z, 

            then rotate at grandfather (YZ)R and then rotate at father (XY)R. 

          * Else if X is right child of Y, and Y is right child of Z, 

            then rotate at grandfather (YZ)L and then rotate at father (XY)L.  

      If X has not become the root, then continue splaying at X. 

   3. X is LR or RL grandchild (zig-zag) 

          * If X is right child of Y, and Y is left child of Z, 

            then rotate at father (YX)L and then rotate at grandfather (XZ)R. 

          * Else if X is left child of Y, and Y is right child of Z, 

            then rotate at father (YX)R and then rotate at grandfather (XZ)L.  
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      If X has not become the root, then continue splaying at X. 

 

 

Performance analysis 

Choosing the right kind of tree affect the performance significantly. For this reason, Ben 

Pfaff has done an empirical study of the relationship between the algorithms used to 

manage BST-based data structures and performance characteristics in real systems. He 

compared four variants of the BST’s data structure: unbalanced-, AVL-, Red-black-, 

and Splay- trees. For each BST data structure variant, he compared five different node 

representations: plain, with parent pointers, threaded, right-threaded, and with an in-

order linked list.  

At the end, he ran three experiments in real-world scenarios and one in random data-set 

scenario on 20 BST variants. The next table shows results of running a Virtual Memory 

Area activity (mmap() and munmap() calls) during the execution of three programs and 

one simulated. 

The results of the “Squid” test are the most relevance for the design of the antivirus 

cache, because of the many similarities between the caching of web pages and disk 

sectors.  
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Test  

Node 

represent. Time (seconds) 

Performance improvement 

 against BST 

  BST AVL RB SPLAY AVL RB SPLAY 

Mozilla Plain 4.49 4.81 5.32 2.71 -7.12% -18.48% 39.64% 

  Parents 15.67 3.65 3.78 2.63 76.70% 75.87% 83.21% 

  Threads 16.77 3.93 3.95 2.67 76.56% 76.44% 84.07% 

  R. threads 16.91 4.07 4.20 2.68 75.93% 75.16% 84.15% 

  Linked list 16.31 3.64 4.35 2.74 77.68% 73.32% 83.20% 

Vmware Plain 208.00 8.72 10.59 3.77 95.80% 94.90% 98.18% 

  Parents 447.40 6.31 7.32 3.62 98.59% 98.36% 99.19% 

  Threads 445.80 6.91 8.51 3.64 98.45% 98.09% 99.18% 

  R. threads 446.40 6.88 8.59 3.51 98.45% 98.07% 99.21% 

  Linked list 472.00 7.35 8.60 3.45 98.44% 98.17% 99.26% 

Squid Plain 7.34 4.41 4.67 2.84 39.91% 36.37% 61.30% 

  Parents 12.52 3.69 3.80 2.64 70.52% 69.64% 78.91% 

  Threads 13.44 3.92 4.18 2.70 70.83% 68.89% 79.91% 

  R. threads 14.46 4.17 4.27 2.86 71.16% 70.47% 80.22% 

  Linked list 13.13 4.02 4.19 2.65 69.38% 68.08% 79.81% 

Random Plain 2.83 2.81 2.86 3.43 0.70% -1.06% -21.20% 

  Parents 1.63 1.67 1.64 1.94 -2.45% -0.61% -19.01% 

  Threads 1.64 1.74 1.68 2.02 -6.09% -2.43% -23.17% 

  R. threads 1.92 1.96 1.93 2.22 -2.08% -0.52% -15.62% 

  Linked list 1.46 1.54 1.51 1.74 -5.47% -3.42% -19.17% 

Table 3 - BST evaluation 

 

For the random data set, unbalanced BSTs are best because they do not insert extra 

work due to tree rebalancing1. There is no need for complex rebalancing algorithms, 

because ordinary BSTs produce acceptably balanced trees with high likelihood. Thus, 

for random insertions, data structures with the least extra overhead (above ordinary 

BSTs) yield the best performance.  

                                                 

1 For the random data set, ordinary BSTs make no rotations, red-black trees make 209, AVL trees make 

267, and splay trees make 2,678 
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The red-black balancing rule is more permissive than the AVL balancing rule, resulting 

in less superfluous rebalancing, so red-black trees perform better for random insertions. 

Splay trees consistently performed worst, and required the most comparisons, within 

each node representation category in the random test. This reflects the work required to 

splay each node accessed to the root of the tree, in the expectation that it would soon be 

accessed again. This effort is wasted for the random set because of its lack of locality. 

 

On the other hand, when data are not uniformly accessed, ordinary BSTs become much 

slower than self-balancing trees. This condition of not randomness is usually respected 

for real-world scenarios, where data are inserted and accessed sequentially and 

repeatedly. If data are sequentially inserted into the cache, unbalanced BSTs generate a 

tree shaped as linked list, degrading completely tree performance. As previously 

discussed, in this situation node operations on ordinary BSTs reach a complexity O(n), 

while self-balancing BSTs as AVL and splay-trees, to the capacity of reorganizing the 

tree, reduce time to O(log(n)). 

Looking at the Squid scenario, both AVL and splay trees beat unbalanced BSTs by a 

wide margin, ranging from 40% of AVL with plain node-representation to 80% of splay 

tree when right threads node representation is used. In particular, splay trees are better, 

due to splay tree’s ability to keep frequently used node near the top of the tree.  
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Figure 19 – BST evaluation - squid scenario 
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Conclusions 

In a real-world scenario as in a file-system cache, sectors are accessed mostly 

sequentially and often repeatedly. Unbalanced BSTs have been demonstrated to be too 

slowly for practical applications, and more sophisticated self-balancing tree has been 

proposed in order to reduce computation complexity and improve the global 

performances (40-80%). Both AVL and splay trees represents valid solutions: first ones 

for ability to rebalance tree only when necessary, reducing “extra work” times when 

operating with random data set; second ones for offering frequently used nodes fastest.  

 

The antivirus cache is designed as AVL-tree, where the leaf reference data-blocks of the 

virtual disk. Each addressed block is represented as an object linked by the leaf and a 

cached file consists of a set of leaf.  As already discussed one block is a sequence of 

continuous sectors, delimited in a range by the first and the last sector.  

The entire tree is indexed using the first sector of each cluster.  When a new data block 

has to be added to the cache, a new leaf is created to reference the cluster and the 

correct position is looked up using the block’s first sector. Later on, possible tree 

reorganization could occur.  

In details, each leaf references one sector_cache_data element that belongs to a 

sector_list list, used to index blocks belonging to the same file. In this way, when a file 

has to be accessed, its blocks are addressed using the sector_list list and not querying 

the tree for each single cluster. This mechanism improves at the same time cache 

performance and efficiency.  
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Figure 20 - On-access scan – cache architecture 
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5.3. Antivirus integration 

The libclamAV open source library (version 0.88) has been adapted and reused in the 

test implementation, integrated as antivirus engine for providing virus scan facilities. 

The library has been slightly modified, to be able to operate with the antivirus cache; 

antivirus engines are suitable for file scanning, while secureOS antivirus should work at 

lower level, directly on hard disk sector and block data structures. The goal has been to 

create a generic antivirus interface, making the antivirus layer extremely portable and 

reusable in different implementations; in fact just few “lines of code” of the library have 

been modified, while much of the code has been included into the secureOS service. 

Technically, the routine for virus-scanning a file has been hacked to handle data coming 

from a list of sectors instead of a file descriptor (once opened, a file is read iteratively as 

a sequential set of data).  

Here is the hack of the  matcher.c source file1: 

< int cli_scandesc (int desc,  

<                   const char **virname,  

<                   unsigned long int *scanned,  

<                   const struct cl_node *root,  

<                   short otfrec, unsigned short ftype) 

[…] 

<   while ((bytes = cli_readn(desc, buff, SCANBUFF)) > 0) 

 

> int _td_scanlist (struct sector_list *pSectorList, int BDRVfd,     

>                   const char **virname,  

>                   unsigned long int *scanned,  

>                   const struct cl_node *root,  

>                   short otfrec, unsigned short ftype) 

> 

> int desc = -1; // private descriptor set to dummy value of 1 

[…]    

>   while ((bytes = _td_readn(pSectorList, BDRVfd,  

                             buff, SCANBUFF)) > 0) 

 

                                                 

1 Red/minor (<) is original code and blue/major (>) is new code 
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The _td_readn() function1 is responsible for parsing the file sector chain (sectors 

belonging to the file to scan) in sequential fixed-size data sets, reading at each iteration 

the file’s content from the virtual disk. This routine works similarly to the libc’s 

read(), where an internal mark is moved forward at each function call, labelling the 

next “element” to be read.  

 

The algorithm is particularly interesting and here is presented as pseudo-code 2: 

 

while (still to read > 0 AND number of sectors != 0) 

  { 

   current byte = element.first_sector * 512; 

   number of sector to read = (element.last_sector –  

                               element.first_sector) * 512; 

 

// seek to the current position 

   lseek (device, current byte + offset, SEEK_SET); 

 

   if (number of sectors - offset > still to read)   

// the current element is bigger of the read one 

   { 

     ret = read (device, buffer + already read, still to read); 

 

// update the indexes 

   still to read -= ret; 

   already read += ret; 

   offset + = ret; 

  } 

 

// the left sectors of the i-element are not enough 

  else  

  { 

 

     ret = read (device, buff + already read,  

                 number of sectors – offset); 

         

                                                 

1 Please see Appendix A for the entire_td_readn() source code. 

2 Appendix A contains the C implementation. 
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// update the indexes 

   still to read -= ret; 

   already read += ret; 

 

// set the status pointer to next element 

       i++;  

 

// go to the next element 

       pStatus.element++; 

       pStatus.offset = 0; 

  } 

} 

 

Moreover, this function calculates each file size and discards those bigger than 

10MByte (20.000 sectors). This trade-off between performance and security has been 

temporarily used in the research environment. 

 

When the antivirus service starts, the td_init_avscan() routine1 load the Clamavis 

engine the virus pattern database.  

 

The td_avscan() function is the real interface to the antivirus engine. In agreement with 

the on-access scan algorithm, when reading on a dirty file has been intercepted, the 

file’s whole content is virus-scanned; the antivirus interface is queried with the file 

sector chain and the scan results, together with a possible virus name, are returned: 

int td_avscan (struct sector_list *pSectorList, int BDRVfd,  

               char **virname) 

 

As it can be seen, this antivirus interface is very generic, to be high reusable and 

portable on different antivirus engines.  

                                                 

1 Please see Appendix A for td_init_avscan() source code. 
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5.4. Testing 

Testing represents the last phase of on-access scan research, proving that this antivirus 

agent, implemented into the test prototype, works. Future commercial applications, as 

all-in-one security solutions, can be developed. Testing shows that the on-access 

component correctly intercepts the reading and writing operations of virtual disk’s 

sectors, builds file sector chains from single sector accesses and keeps its internal cache 

synchronized with Windows system. The on-access algorithm is right enforced into the 

agent, which keeps a footprint on which files has been lately created and modified. This 

permits to virus-scan just critical file-system resources, realizing a performance 

improved solution in terms of time overhead of the antivirus service.  

Here it is given the evidence of the obtained results. 

 

Low-level I/O activities are wrapped by the modified version of the VMM for antivirus 

agent. Each Windows file-system operation to the virtual disk image is captured as 

block reading or writing. Blocks are usually determined by a size of 2, 8, and 16 sectors: 

hda: read()  ; [ 3191953 - 3191968 ] ; (16 sectors) 

hda: read()  ; [ 3192072 - 3192087 ] ; (16 sectors) 

hda: write() ; [ 2108207 - 2108214 ] ; (8 sectors) 

hda: read()  ; [ 3192088 - 3192089 ] ; (2 sectors) 

Hda: read()  ; [ 3273873 - 3273880 ] ; (8 sectors) 

hda: write() ; [ 2108367 - 2108374 ] ; (8 sectors) 

hda: write() ; [ 2112623 - 2112638 ] ; (16 sectors) 
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Windows NTFS (version 3.1) has been counted as “de facto standard” for the user 

system’s file-system and the development process has been supported through NTFS 

Linux driver, distributed in the Linux-NTFS toolkit. Therefore, current prototype tested 

here assumes an NTFS file-system and does not work with FAT.  

When a sector is written, the agent identifies the file owning that sector. If a cache miss 

occurs, the antivirus builds a new file sector chain to add into the cache; otherwise, it 

upgrades the cache’s content with the current status of the disk. In the same way, at read 

access, cache is scanned for the list of blocks for that operation.  

In both use cases, the agent has given evidence of being able, given an individual sector, 

to build the whole list of blocks forming that file and to lookup for the file name. 

 

For example, the catsrvut.dll library has been “resolved” into a list of five blocks, while 

the change.log log seems of bigger size. 

*** sector_cache_add_sector_list *** 

Adding catsrvut.dll, m_sector_list_size = 5 

    #0: 1264592 to 1264663 

    #1: 774992 to 775295 

    #2: 394224 to 394535 

    #3: 710000 to 710327 

    #4: 1205040 to 1205255 

 

*** sector_cache_add_sector_list *** 

Adding change.log, m_sector_list_size = 15 

    #0: 909872 to 909903 

    #1: 1483592 to 1483687 
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    #2: 2966360 to 2966391 

    #3: 150960 to 150991 

    #4: 2752456 to 2752487 

    #5: 107448 to 107479 

    #6: 723448 to 723479 

    #7: 896272 to 896303 

    #8: 71336 to 71367 

    #9: 91856 to 91887 

    #10: 123680 to 123711 

    #11: 989600 to 989631 

    #12: 985600 to 985631 

    #13: 895632 to 895663 

    #14: 1474056 to 1474087 

 

The caching mechanism works pretty well, in both reading and writing.  

When Windows starts, the agent shows a read access of the volume boot sector, indexes 

as sector 0 in the file-system and named $Boot (a dollar is set above metadata files); the 

access is predictable, since boot sector contains the bootstrapping code used to run 

Windows. When accessed, $Boot is cached and the dirty flag is cleaned; later on, it is 

simply shipped: 

hda: read() ; [ 0 - 0 ] (1 sectors) 

rM: $Boot – flag set to CLEAN 

hda: read() ; [ 0 - 0 ] (1 sectors) 

rH: $Boot 

 

The same behaviour has been noticed for the plug&play driver archive (driver.cab): 
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hda: read() ; [ 63 - 63 ] (1 sectors) 

rM: driver.cab – flag set to CLEAN 

hda: read() ; [ 63 - 63 ] (1 sectors) 

rH: driver.cab 

 

 

When a write occurs, a comparable procedure is run; anyway, now the file is considered 

as dirty: 

 

hda: write() ; [ 65593 - 65593 ] (1 sectors) 

wM: change.log 

ntfs_reverse_lookup_and_add_to_cache() - dirty flag set on 

hda: write() ; [ 65593 - 65593 ] (1 sectors) 

wH: change.log 

write() - dirty flag set on change.log 

 

The antivirus engine seems to work quite well, being activated when a read occurs on a 

cached file that appears new or modified (dirty flag set).  

This first log shows two skipped files, a third one scanned and the last one reported 

infected: 

 

1. raw_read() - cache hit 

file ipxwan.dll has clean flag - scan not required 

raw_read() - cache hit 

file SiteGeneric.css has clean flag - scan not required 
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2. raw_read() – cache hit 

file wdma_rip.PNF has dirty flag 

going to scan it 

File clean 

flag reset to CLEAN 

raw_read() – cache hit 

file test2.txt has dirty flag 

going to scan it 

VIRUS FOUND: Eicar-Test-Signature 

flag reset to CLEAN 

 

 

This second log is higher-level and reports which files are scanned. It’s interesting to 

note that both plug&play driver archive and the swap file are skipped because they are 

bugger than 10Mbyte. The “Eicar-Test-Signature” is recognized in the text2.txt 

document. 

 

* skipping driver.cab (76 MB) 

td_avscan(): ntldr - virus not found 

td_avscan(): CollectedData_15.xml - virus not found 

td_avscan(): GTL_SiteGeneric[1].css - virus not found 

* skipping pagefile.sys (3422 MB) 

td_avscan(): noise.chs - virus not found 

td_avscan(): noise.cht - virus not found 

td_avscan(): comexp.chm - virus not found 

* td_avscan(): test2.txt - VIRUS FOUND: Eicar-Test-Signature 
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Finally a hued screenshot, displaying Windows XP “on the top” of the security shell, 

proves that the on-access antivirus works! As soon as the EICAR-test file has been 

opened within user environment, the agent console reports the VIRUS FOUND error, 

along with virus filename. The two real-time logs print each virus-scanned file and the 

caching activity. 

 

Figure 21 - On-access scan – screen-shoot: virus found 
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6. Network scan 

Network scan deals with the problem of scanning TCP/IP data incoming and outgoing 

the user system for known viruses and malware. At run-time, the scan engine identifies 

and deletes threats spreading over “untrusted” networks before reaching and infecting 

the user environment. At the same time, in case of infection, neither viruses nor 

malware are able to propagate outside the secured computer: the antivirus analyzes any 

data before they are transmitted to the physical interface. Cleaning the user’s connection 

in both directions, the personal computer is protected from external threats and vice 

versa the neighbourhood (e.g. the LAN) is secured from possible virus spreads. 

 

To accomplish this goal, the following software architecture has been designed and 

implemented. Virtualization provides the guest OS with a virtual Ethernet device, and 

its associate network, known as VM-NET, used to communicate with external networks. 

Therefore, the user system detects just one interface, using it for its network 

connections, independently from the type or the number of physical devices. All 

network connections established by Windows are carried out on this virtual network and 

automatically routed by the secureOS, from the VM-NET to the appropriate physical 

interface. This routing mechanism is encapsulated into the security shell, in order to be 

completely hidden from user prospective. 

Since all network connections related to the Windows system come over the virtual 

network, it is quite easy to capture any data from the sub layer system. An AV stream 

interceptor is installed in the secureOS, on the VM-NET segment connecting the virtual 
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environment with the kernel routing service. Then, the captured data are analyzed by the 

antivirus engine for viruses and malware. 
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Figure 22 - Network scan - basic architecture 

 

The great benefit of the proposed solution is the capacity of virus-scanning any TCP/IP 

stream, independently from the physical interface and inconspicuously to the user and 

Windows system. 

 

Free Software solutions 

Any antivirus can be used to implement the AV Engine and the Signature Database 

components. Since Clamavis does not natively support network scanning, it should be 

coupled with an external Interceptor component, which would capture the data packets 

and would forward them to the antivirus core. Because of the Free Software license 

adopted by ClamAV antivirus (GPL), at least three Free extensions are indexed on the 

3rd party software page of the project1: 

                                                 

1 ClamAV 3rd party software, http://www.clamav.net/3rdparty.html 
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− kclamav: light and streaming version of Clamavis, built as a Linux 2.6 kernel module 

and hooked via the Netfilter API. The ClamAV virus database is loaded into kernel 

memory. Kclamav still in PRE-ALPHA status (version 0.0.1, released in January 

2006), and its installation is quite tricky: it requires Linux Kernel and Netfilter API 

patching, and some rules of Iptables to be compiled; 

− snort-ClamAV: Snort pre-processor that scans data in network packets for viruses. 

Snort is a Free Software network intrusion prevention and detection system utilizing 

a rule-driven language, which combines the benefits of signature, protocol and 

anomaly based inspection methods. 

− snort_inline ClamAV pre-processor: snort-inline1 is shipped with a ClamAV pre-

processor that scan network traffic for viruses. It can choose which protocols must be 

monitored. When a virus is detected, snort-inline can send a reset and drop the 

relative packets.  

6.1. VPNs 

A general issue in the antivirus research field is the scanning of encrypted 

communication channels. VPNs2 are frequently used by companies to interconnect 

                                                 

1 From snort_inline homepage, http://snort-inline.sourceforge.net/: snort_inline is basically a modified 

version of Snort that accepts packets from iptables, via libipq, instead of libpcap. It then uses new rule 

types (drop, sdrop, reject) to tell iptables whether the packet should be dropped, rejected, modified, or 

allowed to pass based on a snort rule set.  We can think of this as an Intrusion Prevention System (IPS) 

that uses existing Intrusion Detection System (IDS) signatures to make decisions on packets that traverse 

snort_inline. 

2 VPN is acronyms for Virtual Private Network. 
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geographically distributed offices and departments, with a secure communication 

channel over a publicly “untrusted” accessible network (normally theInternet). The 

access to the company’s Intranet is usually permitted from outside only via VPN. VPNs 

use cryptographic tunnelling protocols to provide the intended confidentiality, sender 

authentication, and message integrity. Cryptography can be applied to the transport 

layer1 or more securely to the bottom network layer2; in both cases the applicative 

payload containing the data is completely encrypted. 

 

VPN consequences on virus protection  

VPNs build encrypted network channels to ensure the confidentiality of data and to 

prevent malicious users from sniffing and stealing confidential information. However, 

the encrypted nature of VPN-protocols prevents trusted applications to access 

information transferred on VPN channels. This native limitation is reflected on the AV 

stream interceptor previously described, which cannot scan VPNs established by the 

Windows system. Viruses and malware could spread through the VPN channel from the 

Internet to the user-system, and later on to every department connected via VPN. 

 

                                                 

1 OpenVPN encrypts at transport layer, http://openvpn.net/ 

2 IPSEC running in tunneling mode encrypt at network layer, http://www.ietf.org/rfc/rfc2401.txt 
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Figure 23 - VPN scan problem 

 

An innovative approach has been suggested as a solution to the VPN virus scanning 

issue, ensuring that all data transmitted on encrypted channels, independently from the 

layer (transport or network) or the encryption algorithm used, get scanned for viruses 

and malware.  

 

The answer 

The idea is rather simple: VPNs are established from the secureOS and their content is 

extracted, virus scanned and bridged to Windows (and vice versa). The end user 

manages the encrypted channels from a control panel (the User Control Center (UCC)), 

where preconfigured VPNs are deployed by the security administrator from a central 

site to each personal computer, as Network Connection Control1 policies (basically an 

XML file containing the configuration). Normally the user cannot create new VPNs but 

should consider using the preconfigured ones. The NCC module offers a visual interface 

                                                 

1 NCC as acronym of Network Connection Control 



 82 

to list preconfigured VPN, activate and shutdown single encrypted channels, show 

information regarding the status. 

When a VPN has been selected by the user, its configuration is sent to the appropriate 

agent and an internal mechanism is run. The VPN agent makes use of a database to 

establish encrypted tunnel and to bring the encrypted network channel up. This includes 

information regarding available VPN drivers and a compatibility list of clients and 

servers. In this way, the agent loads the appropriate driver and uses the client for the 

VPN-server specified in the received configuration.  

When the VPN is correctly established and it is operative into secureOS, the agent 

configures the routing-table to bridge data extracted from VPNs to Windows, by the 

virtual network. 

 

As it can be seen in the figure, VPNs (red colour) terminate inside the secureOS; their 

network data are “extracted” as plain text (blue colour) and forwarded through the 

virtual network to the VM environment and to Windows. The antivirus is therefore able 

to capture and virus-analyze VPN data (in blue), now running in plain text on the VM-

Net, just like of not-VPN traffic. 

 

The bridging mechanism continues in both directions until the user closes voluntarily 

the secure tunnel. At that point, VPNs established from the security shell are shutdown. 
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Figure 24 – Network scan – architecture for VPNs 

 

Scan of encrypted channels guarantees higher protection against viruses and malware, 

especially when VPNs are the only communication channels allowed, either for the 

single computer than its neighbourhood. A network infrastructure built entirely with 

VPNs, could be compromised globally by viruses, spreading without control inside 

encrypted channels.   

Unfortunately, the described architecture has not been practically implemented because 

of the lack of commercial Linux-compatible clients. Since many vendors supply only 

Windows VPN clients and a strict point is portability, to be intended as migration from 

an existing system, it becomes mandatory to maintain current VPN infrastructures and 

establish Virtual Private Network within Windows. As already discussed, this 

configuration prevents antivirus installed into secureOS to scan VPN data, with 

negative security implications on the user environment.  
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6.2. TLS/SSL and SSH protocols 

In the previous chapter, the problem of scanning TCP/IP network streams encrypted at 

Transport- or Network layers has been analysed, as it has been done in the Virtual 

Private Networks. The idea of managing VPNs from the security shell, managing new 

encrypted tunnels at user demand, enables antivirus to intercept any data for a real-time 

virus scan, before being bridged to the user system. 

However when a network stream is encrypted at application layer, the encryption is 

directly established between applications and data cannot be accessed by the antivirus 

of secureOS, that operate at lower layers. Viruses and malware spreading across these 

communication channels cannot be intercepted by antivirus, because information is 

encrypted.  

 

This is the case of TLS/SSL and SSH protocols, used to access remote information is a 

secure wavy, through application layer encryption. Both TSL/SSL and SSH are 

distributed as suite of set of network protocols that allows establishing of secure 

channels between two end-points, by the use of public-key cryptography features, and 

providing end-points authentication and communications privacy. TLS for example 

works involving three basic phases: 

1. Peer negotiation for algorithm support 

2. Public key encryption-based key exchange or certificate-based authentication 

3. Symmetric cipher -based traffic encryption 
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SSH is typically used to log into a remote machine and execute commands, but it also 

supports tunnelling, forwarding arbitrary TCP ports and X11 connections; it can transfer 

files using the associated SFTP or SCP protocols. From an evil prospective SSH 

protocols suite could be adopted by an attacker to transfer evil code (as backdoors and 

DoS worms) on the target machine, avoiding antivirus controls and run unauthorized 

software. At the same time, SSH could be used to instantiate connections from the 

target machine to outside world, avoiding possible content-filtering controls and 

stealing sensible information from the company network. 

 

 

Figure 25 – SSL layer design 

 

Technically TLS/SSL runs on layers beneath application protocols such as HTTP, FTP, 

SMTP, and NNTP, and it can add encryption security to any protocol that uses reliable 

connections (such as TCP). However it’s most commonly adopted to implement 

HTTPS, an extension to standard HTTP protocol, used to secure World Wide Web 

pages for applications such as electronic commerce, in which sensitive information such 

as credit-card numbers are transmitted over Internet. SSL is also used in conjunction 

with mail protocols, like SMTP and POP3, to grant data confidentiality and personal 
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privacy. When emails are sent (received), their content is directly encrypted at 

application layer by the mail-client (server) and transmitted in a secure form over the 

network.  

 

At the same time, the advantages offered by the TLS/SSL protocol represent a limit to 

antivirus efficiency, since web pages transmitted over HTTPS channels and emails 

received and sent via POP3S and SMTPS cannot be scanned by the antivirus engine 

installed in a security shell. 

Nowadays a lot of viruses and malware spreads across World Wide Web using security 

flaws discovered in common browsers, as Internet Explorer, and http servers, as 

Microsoft IIS. Core-Red1 for example is a well-known worm that exploits a buffer 

overflow in Microsoft IIS index-service library and installs itself on the victim target, 

permitting execution of arbitrary code in the Local System security context. This level 

of privilege effectively gives an attacker complete control of the victim system. 

Moreover, in the earlier variant of the worm, victim hosts with a default language of 

English experienced the following defacement on all pages requested from the server: 

    HELLO! Welcome to http://www.worm.com! Hacked By Chinese! 

In addition to possible web site defacement, infected systems may experience 

performance degradation as a result of the scan activity of this worm. This degradation 

can become quite severe since it is possible for a worm to infect a machine multiple 

times simultaneously. 

                                                 

1 CERT Advisory n.2001-19 on Code Red worm:http://www.cert.org/advisories/CA-2001-19.html 
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Malware propagates easily also as email attachment, taking advantage of security flaws 

of email-clients or browser-shared libraries. This is the case of the Nimda1 worm, which 

exploits the “Automatic Execution of Embedded MIME Types” vulnerability 

discovered in Microsoft Internet Explorer 5.5 SP1, to propagate through email arriving 

as MIME "multipart/alternative" and execute arbitrary commands on the victim host. 

The impact of the Nimda worm is similar to the Core-Red one.  

 

While a standard antivirus installation is not able to extract and scan data-streams 

encrypted at application layer, the idea described here permits to run the antivirus 

service also on connections encrypted at application layer, just for a restricted set of 

applications, as SSL/TLS over HTTP (HTTPS) and SSH suite (STFP and SCP). Due to 

the high number of malware spreading over Web through HTTP(s) protocols, it is of 

primary importance to support HTTPS antivirus filtering.  

 

The idea 

In order to virus-scan Web pages served through HTTPS, the idea is to implement a sort 

of transparent proxy agent that acts as Man-In-The-Middle (MITM) attacker. The agent 

creates a couple of private/public key for each new HTTPS connection, and intercepts 

TSL/SSL handshaking to realize a MITM attack. It decrypts HTTPS traffic and sends 

                                                 

1 CERT Advisory n.2001-26 on Nimda worm: http://www.cert.org/advisories/CA-2001-26.html 
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Web content to the antivirus engine. If a virus is not found the Web request is re-

encrypted for the user browser, otherwise an alarm is raised. 

  

The Man-In-The-Middle attack could be explained as “story” with three “actors”: Alice 

as end-user (the victim), Bob as Web-server (www.server.com) and Mallory as attacker 

(the transparent proxy www.attacker.org). Suppose Alice wishes to communicate with 

Bob via HTTPS, and that Mallory wishes to eavesdrop on the conversation, or possibly 

deliver a false message to Bob. To get started, Alice asks Bob for his public key. Bob 

sends his public key to Alice, but Mallory intercepts it. Mallory simply sends Alice a 

public key for which she has the private, matching, key. Alice, believing this public key 

to be Bob's, then encrypts her message with Mallory's key and sends the encrypted 

message back to Bob. Mallory again intercepts, decrypts the message, keeps a copy, and 

re-encrypts it (after alteration if desired) using the public key Bob originally sent to 

Alice. When Bob receives the newly encrypted message, he will believe it came from 

Alice.  
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Figure 26 - Man-In-The-Middle attacks against HTTPS 

 

A PoC1 has been developed by Simon Newton to show MITM attack for HTTP over 

TLS/SSL. 

 

Since MITM is to be considered more as an attack technique than a SSL feature, it 

should not to be considered a reliable solution, but more as a hack that permits to 

intercept and scan Web encrypted pages with strong limitations, for a possible product 

(and not for the research environment).  

For example, MITM mechanism implemented in the proxy can’t work when digital 

certificates are used. A certificate is a combination of public key and its digital 

signature, made by an external authority (the Certification Authority) that grants key 

                                                 

1 Ssl_proxy PoC: http://www.nomis52.net/data/ssl_proxy.pl 
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belong to an individual. In this occasion MITM attack is immediately detected by both 

communication sides, blocking SSL authentication. 

 

Two approaches can  be applied to virus-scan SSH (and SFTP/SCP) network 

connections, one which is exactly the same used for HTTPS and that consists on 

implementing a sort of agent that acts as hidden proxy running MITM attacks, the other 

similar to idea presented for VPN scan. The second one in particular makes use of the 

SSH embedded proxy capabilities that permit to instantiate a fictitious session from the 

secureOS to target, and bridge content data to the user-system as plain-text (interposing 

the antivirus interceptor to capture and send the network stream to analyze to the 

antivirus). 
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6.3. Removable network devices 

In last couple of years, removable network devices as LAN, WLAN and UMTS have 

become more widespread in IT market, distributed either in PCMCIA and USB format.  

Each computer is equipped with at least two USB ports and PCMCIA slots (for 

laptops). Almost any operating system, as Windows XP, Linux and MacOS, support hot-

plug interfaces and numerous devices, as printers, scanners, cameras and mass-storage, 

through periodic drivers upgrades.  

 

Removable network devices are used for many 

purposes. LAN PCMCIA cards allow physical 

connection of old laptops to network cabled 

infrastructures. Ten-year-old laptops are usually not 

equipped with RJ-45 connectors or 100mbit compliant 

Ethernet chipset, used in newer LANs. On the other 

hand, Wireless devices are used to access network infrastructures easily and 

comfortably, without using wires. At the same time wireless technology guarantees 

worldwide Web access. By UTMS technology, telephony companies offer special 

contracts for worldwide Internet access. In highway petrol station, airports, train 

stations, and also bars, Internet access is offered to customers, for free or cheaply, by 

WLAN technology (technically known as IEEE 802.11 or WiFi standard). 
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An interesting Spanish project, called FON1, aims to create a WiFi community to permit 

free world-wide Web access. FON homepage is self-explaining: “FON is the largest 

WiFi community in the world. Our members share their wireless Internet access at 

home and, in return, enjoy free WiFi wherever they find another Fonero’s Access Point. 

It all started as a simple idea. Why should you pay for Internet access on the go when 

you have already paid for it at home? Exactly, you shouldn’t. So we decided to help 

create a community of people who get more out of their connection through sharing.” 

 

Security implications 

Wireless infrastructures are for their nature insecure, since data are not wired-

embedded, but are transmitted as radio signals in the air; information are not physically 

protected as in standard wired LAN. Wireless communications are much easier to be 

intercepted and analyzed by evil users, looking for sensitive data. Many wireless 

antennas are available at cheap price on market.  

So, wireless networks should be used with attention and parsimony, only when strictly 

necessary (LANs must be preferable when available), and strong encryption 

                                                 

1 Movimento FON, http://en.fon.com/ 
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mechanisms must be implemented: for example, WPA21 in conjunction with a 

RADIUS2 server or VPN.  

Moreover, fake public WiFi hotspots3 could be configured as traps, in order to force 

unaware users to associate with them and to send personal information, like accounts 

and credit-card numbers, to the attacker.  

At the same time, it is to be considered that generic user is normally not a computer 

expert, so could involuntarily associate his laptop to untrusted WiFi networks. When a 

wireless card is found, Windows XP supplies the user with a user-friendly GUI where it 

is possible double-click for the desired network. Easily and frequently, the user makes a 

wrong decision and associates his personal laptop with an evil hotspot. 

At the end, but not less important, it is the problem of virus scan many hot-plug network 

interfaces. When a removable device is configured within Windows, data transmitted 

through it are not intercepted by processes running outside the operating system, as it 

could be the antivirus layer of secureOS. Thus, the idea previously described to 

intercept network streams from the bottom layer matches the problem, but it is not able 

                                                 

1 WiFi Protected Access is a class of systems to secure wireless networks, created in response to several 

serious weaknesses found in the previous WEP system. http://en.wikipedia.org/wiki/Wi-

Fi_Protected_Access 

2 Remote Authentication Dial In User Service (RADIUS) is an AAA (authentication, authorization, and 

accounting) protocol for applications such as network access or IP mobility. It is intended to work in both 

local and roaming situations. FreeRADIUS is a valid Free Software alternative to commercial ones, 

http://wiki.freeradius.org/Main_Page 

3 Hotspots are venues that offer WiFi access. The public can use their laptop, PDA, or Dual-mode phone 

to access the Internet, http://en.wikipedia.org/wiki/Hotspot_%28Wi-Fi%29 
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to solve it. Therefore, an improved extension, which it is able to handle hot-plug 

network devices, has been researched and it is presented here. 

 

Massive distribution of removable network devices and the insecure nature of the 

wireless technology make important to secure their use, in order to grant confidentiality 

and integrity of personal computer that uses these devices. The proposal solution gives 

an answer to these open issues.  

Security policies for hot-plug devices are centrally configured by the security 

administrator, remotely deployed to each personal computer, and locally enforced, to be 

strictly respected by individual users. A device control mechanism has been 

implemented to wrap removable devices “offered” to user-system and network 

connections are managed from the security shell.  

In this way, local users cannot connect to untrusted and unconfigured Internet hotspots. 

At the same time, information data carried out over hot-plug network channels are 

secured and virus-scanned from the secureOS antivirus layer.  

 

The idea 

The innovative idea is to move the hot-plug layer from user-system to security shell. 

Virtualization permits to manage devices “offered” to the guest OS through a sort of 

access-list. Normally when a removable interface is installed (e.g. plugging in a wireless 

device into the laptop’s PCMCIA slot), Windows installs the drivers for the new 

peripheral and automatically configures it, providing immediately functionality to end 

user.  
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The removable devices are managed from the secureOS and Windows is denied from 

installing and configuring unwanted hardware. Two big benefits are achieved: first, new 

device installation is performed only after being accepted by security policy, enabling 

an optimal policy enforcement mechanism; second, the hot-plug network interfaces 

(both wireless and LAN) are automatically and inconspicuously scanned for viruses and 

malware by the existing TCP/IP network layer. Virtualization is essential to create this 

security layer that wraps removable devices and manages them safely.  

 

To user is offered the possibility to manage Hot-plug devices graphically by the User 

Control Center: a module called Network Connection Control is designed to prompt the 

user for the list of preconfigured connections, previously centrally managed by security 

officers.  

When a removable network device is plugged in, the user is informed about the 

available connections: for example, an UTMS connection to company provider or a 

wireless association with trusted hotspots. Administrators could enable the user to setup 

his own wireless connections or to reconfigure an existing one, after verification by 

security policies.  

 

At that point, the appropriate agent setups the desiderate network interface, querying an 

hot-plug device database for the appropriate kernel driver to load. The database 

contains two tables: the device type/name and the appropriate Linux driver (driver 

table); the application used in configuration and their syntax (configuration table).  
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The configuration is translated from XML to the specific format of network utilities like 

ifconfig and iwconfig. When the interface is up, the routing table is appropriately 

reconfigured in order to bridge network data to user-system. Network packets are routed 

from Windows to hot-plug interfaces (and vice-versa), enabling the user to send and 

receive data transparently over the plugged card. With this architecture, antivirus scan is 

also performed over removable network interfaces, automatically and without any extra 

configuration.  

 

 

Figure 27 – Network scan – architecture for removable network devices 

 

Moving “hot-plug device management” should not limit user availability. This means to 

be able to support network Windows features after migration process. Therefore, it is 

not enough be able to set-up removable network interfaces and bridge them to user 

environment, but some other extra-mechanisms should be “cloned” from Windows. 
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For example, what happens when the user travels with the laptop? He would like to use 

a new wireless connection, not already pre-configured. Here the agent scans the 

neighbouring area for existing hotspots (e.g., with the Kismet1 program), parses the 

results and presents them as a multiple-choice list to the user via the User Control 

Center.  

 

What has been presented here is a novel approach to secure hot-plug network devices, 

as LAN, WLAN, and an UTMS cards, available either in USB and PCMCIA  format. 

The greater security comes from two separate concepts: policy enforcement and 

antivirus scan. 

Network policies for hot-plug devices are centrally configured by the security 

administrator, remotely deployed to each personal computer, and locally enforced. A 

device control mechanism has been implemented to wrap removable devices “offered” 

to user-system, and network connections are managed from the security shell. Antivirus 

scan is inconspicuously achieved on data transmitted over removable devices, using the 

existing AV layer. 

                                                 

1 From project homepage, http://www.kismetwireless.net: “Kismet is an 802.11 layer2 wireless network 

detector, sniffer, and intrusion detection system.  Kismet will work with any wireless card which supports 

raw monitoring (rfmon) mode, and can sniff 802.11b, 802.11a, and 802.11g traffic.” 
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7. Further security with disk encryption 

The use of virtualization to encapsulate the user environment in a protected “security 

system” is compatible with the principles of disk encryption. It makes sense to link 

these two technologies, embedding a hidden sub-layer that protects both, security shell 

and virtual system from confidentiality attacks. The user system can be secured 

automatically and transparently by an “external” encryption, and no configuration or 

encryption support is required in the user system. A pre-boot authentication secures the 

access to the personal computer. 

 

Mobile computing and data portability have changed the paradigm for security 

management. Information that was once stored exclusively on mainframes and storage 

servers are now frequently stored outside the corporate perimeter as hard disk data on 

laptop computers, which are highly susceptible to theft or loss. In fact, recent studies 

reveal that more than 80% of U.S. companies have lost laptops with sensitive data in the 

last year, and a single laptop theft can cost to organizations, especially when private 

consumer information is exposed.  

 

The solution, accepted by research community and software market, is data encryption, 

which results in good protection of confidential information. In computer security, the 

most common way to protect confidentiality and authenticity of transmitted and stored 

data is encryption, which allows users to obscure personal information to make them 
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unreadable without a special “knowledge”, as a password, a software key, or a physical 

token.  

A typical approach to protect data confidentiality and authenticity is to encrypt single 

files, using PGP1 or other similar tools. Explicit decryption is required before a file can 

be modified and after plaintext file is no longer needed; it must be re-encrypted and 

securely deleted (wiped). File encryption is widely used to archive secure data 

transmission, such as in secure email deployment.  However, other more inconspicuous 

methods have been devised for storage confidentiality. These can be categorized into 

file-system and disk encryption.  

In file-system encryption, often called folder encryption, individual directories can be 

encrypted. The main problem is that temporary files (such as swap devices / page files, 

various caches, “temp” directories) and metadata (such as the directory structure, file 

names, size and timestamp) are often stored unencrypted. This exposes sensitive 

information as clear text. Notable file-systems that support this kind of encryption 

include Microsoft’s EFS2 and UNIX’s CFS3 and TCFS4. 

 

                                                 

1 Pretty Good Privacy (PGP), originally written by Phil Zimmermann in 1991, it’s a public key encryption 

software, nowadays becomes the “de facto standard” in single file encryption as in email cryptography. 

2 Microsoft Windows 2000 and later O.S. offer the Encryption File System (EFS) layer to encrypt 

transparently single files and folders on NTFS volumes. 

3 M. Blaze. A Cryptographic File System from Unix. Proc. First ACM Conference on Computer and 

Communication Security, Fairfax, VA, 1993. 

4 G. Cattaneo, L. Catuogo, A. Del Sorbo, and P. Persiano. The Design and Implementation of a 

Transparent Crypthographic File System for UNIX. USENIX Annual Technical Conference 2001. 
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A complementary approach known as disk encryption encrypts the whole hard disk 

from the bottom (below the file-system layer), so as all data are encrypted 

inconspicuously. Independently from installed operating system, each hard disk sector 

get encrypted and decrypted individually, once it is access from the file-system. The 

operating system, together with drivers, internal registries, and system configurations 

gets encrypted with a unique key. At the same time, each user’s profile and personal 

document is secure stored in the same way.  

Disk encryption is considered a more secure approach, having several benefits 

compared to conventional approaches. Major encryption coverage is obtained, since 

file-system metadata, temporary files and swap-space are encrypted too; no temporary 

data remains unencrypted, exposing sensible information to an attacker. Since disk 

encryption is completely transparent, no user interaction is required for specific file and 

folder encryption. In disk encryption, the whole hard disk is protected with a global key, 

unlocked at boot-time, so as to make all data decryptable for the operating system when 

computer is powered on. The credentials are inputted via a pre-boot authentication, 

which usually prompts for username and password, manages network authentication or 

hardware tokens. Special pre-boot authentication procedures can be implemented to 

archive fine-grained user management and better user policy enforcement. 

Disk encryption is sometimes used in conjunction with file-system encryption, resulting 

in a more secure implementation. Since disk encryption uses the same key for 

encrypting the whole volume, all data are decryptable when the system runs. If an 

attacker gains access to the computer at run-time, he has access to all files. 

Conventional file and folder encryption instead allows different keys for different 
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portion of disk, and thus an attacker cannot extract information from still-encrypted files 

and folders. 

 

Cryptography notions  

For a cryptographic point-of-view, disk encryption is traditionally implemented as block 

cipher encryption on individual sectors, the basic unit of hard disk storage, consisting of 

512 continuous bytes (4096 bits). Individual encryption is required to perform quick 

single sector random access reads and writes. A block cipher is a symmetric encryption 

algorithm that operates on fixed-length groups 

of n bits, termed block1, as 128bit for the 

Advanced Encryption Standard (AES).  

 

Figure 28 – Block cipher encryption 

 

When encrypting, the cipher function E takes an 

n-bit input block Pn and a k-bit key, yielding an n-bit output block Ek. The decryption 

function D is the inverse of encryption, so that:  

Cn = Ek (Pn) 

Pn = Dk (Cn) 

 

                                                 

1 To not be confused with hard disk block term, denoted a grouped set of sectors, as 16 sectors. Here the 

term refers to the crunch of data on which the cipher works, as 128bit for AES.  
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A block cipher operates on a single block, and thus encrypting all k blocks in the sector 

requires some “mode of operation” to concatenate different outputs so as to provide 

confidentiality for the entire sector. The simplest of the encryption modes is the 

electronic codebook (ECB) mode, in which the message is divided into blocks and each 

block is encrypted separately. The disadvantage of this method is that identical plaintext 

blocks are encrypted into identical cipher-text1 blocks; thus, it reveals data pattern and 

does not provide good quality message confidentiality. 

 

For this reason, a recursive algorithm has been devised and become the “de facto 

standard” for disk encryption. Here is the importance from spending some pages on this 

argument. 

In the cipher-block chaining (CBC) mode each block is XORed with the previous 

cipher before being encrypted; each cipher-text is dependent on all plain text blocks 

processed up to that point. To make each message unique, an initialization vector (IV) is 

used as input in the first block, resulting in the following formulas: 

C0 = IV 

Cn = Ek (Pn XOR Cn-1) 

Pn = Dk (Cn) XOR Cn-1 

 

Since CBC encryption is a recursive algorithm, the encryption of the nth block requires 

the encryption of all proceeding blocks, 0 until n-1. This is an undesired property; 

therefore, the CBC chaining is cut every sector and restarted with a new initialisation 

                                                 

1 An encrypted block (the output) of a cipher function is termed cipher-text. 
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vector, so that sectors are encrypted individually. The choice of the sector as smallest 

unit matches with the smallest unit of hard disks, where a sector is also atomic in terms 

of access. 

 

 

Figure 29 - Cipher Block Chaining (CBC) mode encryption 

 

The IV for sector n is usually set to the 32-bit version of the number n encoded in little-

endian padded with zeros to the block-size of the cipher used, if necessary. This is the 

most simple IV mode, but at the same the most vulnerable.  

 

Security analysis  

Because of the “de facto standard” of CBC in disk encryption and its adoption in the 

implementation, a security analysis on risks concerning the use follows.   

In some condition, it is conceivable that disks encrypted in CBC-mode are subjected to 

repeated scans and active manipulation attacks based on such scans. Some well-known 

attacks, pointed out in 2002 by J. Etienne are:  

- corruption: corruption of chosen data blocks is difficult to detect. As CBC decryption 

has little error propagation, modifying a cipher-text block within sector only points 
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out the corresponding plain-text block and causes the chosen bit to change only the 

block immediately following it; 

- translation: CBC decryption depends on two variables, Cn-1 and Cn. Both can be 

modified at free will. To make meaningful modifications, an attacker has to replace 

the pair Cn-1 and Cn with other cipher-text pair from disk. The first block Cn-1 will 

decrypt to garbage, but the second block Cn will yield a copy of the plain text of the 

copied cipher block. This attack is also known as copy&paste attack; 

- reverting: it is relatively easy to revert chosen sectors to their previous values without 

detection. 

 

Next to these attacks, an embedded vulnerability of the CBC-mode permits to reveal 

data patterns and facilitates a cryptanalyst to extract information as plain text, without 

knowing the encryption key. This opens a big toolbox of watermark attacks. 

The consequence is exactly the same reported for the ECB-mode, where identical plain-

text blocks are encrypted into identical cipher-texts, suggesting data structure and 

content. However, it has been proved that the risk deriving from this vulnerability is 

minimal; in fact, the attack requires about 146 million TB of storage to find at least one 

pair of identical cipher blocks, and much more to rebuild a meaningful data pattern1.   

                                                 

1 Recently it has been discovered by O. Saarinen how to raise this probability, opening the possibility for 

new critical attacks. With public IV and the predicable difference introduced in the first blocks of a 

sequence of plain text, data can be watermarked, which means, the watermarked data is detectable even 

when the key has not been recovered. As the IV progresses with a foreseeable pattern and is guaranteed to 

change the least significant bit ever step, it can be build identical pair of cipher text by writing three 
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The attack is based on the property that in CBC decryption the preceding block’s 

influence is simple, that is, it’s XORed into the plain text. If two identical cipher blocks 

Cn and Cm are found, the attacker knows that both have been formed according to: 

Cm=E(Pm XOR Cm-1) 

Cn=E(Pn XOR Cn-1) 

Since he founds that Cm = Cn, it holds: 

Pm XOR Cm-1 = Pn XOR Cn-1 

which rewritten is  

Cm-1 XOR Cn-1 = Pn XOR Pm 

 

Since the left part is known to attacker, the difference between the two plain texts is 

derivable (if one of the blocks happens to be zero, the difference corresponds to the 

original content of the other related block).  

If Cm or Cn is the first block, the IV must be examined (this is possible cause in standard 

CBC-mode the initialization vector is public formed from sector number). For this 

reason, the new ESSIV IV-mode has been proposed: 

                                                                                                                                               

consecutive sectors each with a flipped LSB relative to the previous (the reason for three instead of two is 

that the second least significant bit might change as well). This "public-IV"-driven CBC encryption will 

output exactly the same cipher text for two consecutive sectors. An attacker can search the disk for 

identical consecutive blocks to find the watermark. This can be done in a single pass, and is much more 

feasible than finding two identical blocks, that are scattered on the disk, as in the previous attack. A few 

bits of information can be encoded into the watermarks, which might serve as tag to prove the existence 

searched sensitive material. 
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E(Sector|Salt) IV, short ESSIV, derives the IV from key material via encryption of the 

sector number with a hashed version of the key material, the salt. ESSIV does not 

specify a particular hash algorithm, but the digest size of the hash must be an accepted 

key size for the block cipher in use. 

Since ESSIV initialization vector depends on a confidential piece of information, the 

sequence of IV is not known, and watermark attacks, based on public-IV, can't be 

launched.  

 

New chaining mode as CMC1 and EME2 are considered secure, because they solve 

these open issues, but are heavy in terms of computational performance. The novel 

LRW3 seems the correct answer; in fact, it has been designed to be robust against 

known vulnerabilities and to provide good performance. CMC- and EME-modes are 

already implemented in some commercial encryption software, while LRW is still in an 

earlier phase. 

 

                                                 

1 Shai Halevi and Phillip Rogaway, A Tweakable Enciphering Mode, CMC Cryptology ePrint Archive: 

Report 2003/148, http://eprint.iacr.org/2003/148 

2IEEE P1619 EME-32-AES Teakable Wide-block Encryption draft, 

http://grouper.ieee.org/groups/1619/email/pdf00011.pdf 

3 LRW draft, http://grouper.ieee.org/groups/1619/email/bin00014.bin 
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7.1. Design 

The goal has been to disk-encrypt the user system from “the outside”, without requiring 

no encryption support or configuration from it, and realizing a hidden and automatic 

security protection. The whole personal computer has been encrypted at once: the 

security shell, with its operating system (data and swap), security layer (agents and 

configurations), security policy database and VMM, and each virtualized user-system. 

A unique key has been used, but up to eight keys associated with eight distinct users or 

local administrators could be adopted. A pre-boot authentication secures the access to 

the personal computer. 

 

A scenario has been considered for the test implementation and its extension has been 

suggested. The whole disk labelled as root partition is encrypted at once, and a boot 

partition used to start the computer and run a pre-boot authentication. The boot partition 

is accessed at an early stage, so it cannot be encrypted. If computer gets lost or stolen, 

no data can be extracted from the hard disk, which is encrypted with strong algorithms 

and protected by a secure authentication mechanism (even opening the computer case, 

extracting and installing the hard disk on a second machine does not give access to 

confidential information).  

 

The computer disk can be decrypted and accessed exclusively by a normal user, 

authenticated via username and password, and a local administrator via hardware token 

as USB-stick, achieving better security and physically protecting administrator login. In 

detail, this stick is entirely encrypted and is unlocked with a password prompted at pre-
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boot time. It contains the owner’s username and a sequence of computer-ID and disk 

password pairs, enabling the access to multiple encrypted systems with a unique 

authentication token. It can be considered as a master key, which contains different 

passwords to many associated computers. This feature is quite useful and fits this 

scenario, in which a local administrator is designed for manage a set of computers, 

independently and differently configured, but would like to remember just the single 

password of his personal token. For a secure point-of-view, token- and disk- passwords 

are decoupled, and local administrator does not need to know the second ones, which 

are stored into the token from central administration. 

 

The boot partition contains a special admin token used as “test” for administrator 

authentication. In the current implementation, when the root partition password is 

retrieved, the admin token is tried to be unlocked; if decryption fails the user does not 

own administrator rights (disk and admin-token are obviously encrypted with the same 

key). Alternatively, the token, now unlocked, communicates to the system that the 

administrator has been correctly authenticated during the pre-boot phase.  

This admin token gets such a high importance, because it represents a secure 

communication channel between pre-boot- and system-boot- phases for the group the 

user belongs to (generic or administrator); no sensitive information as the key’s 

passwords are stored.   
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Figure 30 - Disk encryption - design 
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When the computer powers on, the boot manager loads kernel and ram disk1 from the 

boot partition; this is why both are stored unencrypted. The initrd contains kernel 

drivers2 to handle disk-encryption and the pre-boot authentication procedure that is run3. 

A password is prompted for disk decryption and user authentication. Later on, the 

system tries to detect connected USB-sticks, querying the USB kernel framework and 

presenting two different use cases.  

If no USB is found, the standard password authentication is followed. The admin token 

is queried with the password to understand if user is privileged. In that case, the system 

hangs and an error is returned (remember that administrator must login only via USB-

token for security reasons). Otherwise, the disk is decrypted and system is loaded in 

user environment. 

When USB-stick is connected, the token authentication is used. The same password is 

used to decrypt the stick and when no error occurs, the computer-ID is looked up and 

verified against the real installation. The associated password is read and used for disk 

decryption and admin token unlocking, in the same way as in the password 

authentication. However here, only administrator login is granted and an error is raised 

when the stick belongs to an unprivileged user.  

                                                 

1 The ram disk is a file that, when loaded, behaves as virtual disk, located in the active computer memory 

(RAM). Linux uses a initial ram disk, termed initrd, to preload a set of kernel modules and execute 

special scripts at pre-boot time. 

2 Technically drivers stand for modules. 

3 Appendix A contains an example used in the test implementation. 
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Once the administrator is authenticated, the system offers the downgrading of privileges 

in order to simulate the standard user boot. This feature is very important for debugging.  

When the system starts in admin environment, any graphical interface is replaced with 

debugging text and, instead of running the Windows system, a root shell is opened. 
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Figure 31 - Disk encryption - architecture 
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7.2. Implementation 

The test implementation has been done with LUKS1, being the upcoming GNU/Linux 

standard in disk encryption and providing good documentation, facilitating initial 

installation and future system maintenance. At the same time, LUKS provides secure 

encryption ciphers and a trusted management of multiple key passwords. Up to eight 

keys can be configured, as well as different users. 

AES in CBC-ESSIV mode has been adopted as block cipher, being approved by the US 

government's National Institute of Standards and Technology and considered highly 

secure by the cryptography community. AES is the successor of DES, it is effective 

standard since 2002, and it is now the most popular algorithm used in symmetric key 

cryptography and particularly appreciated for disk encryption applications. The ESSIV 

mode protects against watermark attacks as previously discussed.  

Disk encryption is enabled formatting the entire disk with the command: 

 

echo <password> |  

cryptsetup --cipher aes-cbc-essiv:sha256  

--verify-passphrase luksFormat --batch-mode <disc> 

 

The aes-cbc-essiv:sha256 flag specifies AES in CBC-ESSIV mode as cipher algorithm, 

in conjunction with SHA256 for digest functionalities. 

LUKS is natively supported by Linux kernel, when compiled with these options:     

  

                                                 

1 Linux Unified Key Setup, http://luks.endorphin.org/ 
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Code maturity level options ---> 

[*] Prompt for development code/drivers 

Device Drivers -->  

  Multi-device support (RAID and LVM)  ---> 

[*] Multiple devices driver support (RAID and LVM)  

<*> Device mapper support 

<*> Crypt target support 

  Cryptographic Options -->  

<*> AES cipher algorithms (i586) 

<*> SHA256 digest algorithm 

 

The last step is to instruct the ram-disk with the pre-boot authentication process. In this 

way, the computer starts presenting a login mask, where to insert the credentials for 

decrypting the hard disk.  



 115 

 

Figure 32 - Disk encryption – screen-shot 

 

The interface is completely loocked and secured, so that the interaction is with the input 

box. Standard GNU/Linux shortcuts are disabled via boot loader and appropriate kernel 

patching. There is no way to interrupt or modify the correct boot process.  

Debugging information, generated by the encryption layer and the init scripts, is hidden 

graphically through a “boot splash” software. This solution shows a set of animated 

icons that are dynamically activated during the boot process, as a progress bar, when 

decryption is done via USB-stick for example. If the pre-boot authentication validates 

the user as local administrator, this graphical interface is immediately substituted with a 

debugging terminal and the guest OS in not loaded.  
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Figure 33 - User-friendly boot process 

 

A generalization to the problem 

Instead of using the admin token residing on boot partition as “test” for administrator 

authentication, a central database is queried to retrieve the group the user belongs to. 

This database could reside remotely and be queried via some sort of directory access 

protocols like LDAP. This extension requires both password and username inputted 

(except when username is read from the stick), but it is more flexible and generic. 
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Figure 34 - Disk encryption – future architecture 



 118 

8. Conclusions 

A new approach to virtualization for secure personal computers has been presented. 

Virtualization, which traditionally was used for server consolidation purposes, has been 

distributed to each single computer. Thin clients that were used to access the 

mainframe’s resources now have been equipped with two operating systems, separated 

by a virtualization layer. By virtualization, the security of disparate systems is 

homogeneously managed. 

The security services have been detached from the user system in order to be 

encapsulated in a hidden security shell. Protecting these services from the user 

environment has shown many advantages. First, the security services cannot be 

manipulated and the system’s tamper resistance is ensured. Second, the security policies 

defined on the central site can be locally enforced.  

 

A novel antivirus has been designed to exploit this new application of virtualization. 

While conventional personal antivirus could be switched off and avoided by evil codes 

and skilled users, now the virus protection has been embedded into the security system, 

realizing a threat resistant protection for the user environment.  

 

The whole user system, handled by the antivirus as a single virtual-image file, can be 

efficiently virus scanned. The 3rd generation of the NTFS GNU/Linux drivers offers 

secure writing operations on NTFS file-systems. The antivirus could be integrated in the 

computer boot to assure system cleanness, and in the shutdown to avoid time wasting. 

In fact, a mandatory shutdown of the virtual machine prevents inconsistent states. 
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During the scan activity, which takes on a standard-configured workspace about ten 

minutes, the disk image could become easily inconsistent with the real content, due to 

the possible modifications carried out by the user environment. On the contrary, the 

antivirus “reparations” to the disk’s content could damage the state of the user system. 

 

It has been proved how the relevant on-access scan component analyzes the content of 

the user’s files as soon as they are addressed by the virtual machine. A special driver 

integrated into the virtual machine has been designed to intercept the user’s file-system 

operations and to build a logical representation of the file structure. With the read access 

from the user system to the disk’s file-system, the involved data blocks are looked up or 

inserted in a cache and examined by the antivirus engine. 

 

The big challenge has been to develop an efficient, fast, and reliable cache that does not 

behave as a “bottleneck” for the user-system and does not kill its usability.  

The file structure has been accurately studied in order to design a fast and a no memory-

waste model of cache. A self-balancing BST (AVL-tree) has been adopted for its 

capacity to reorganize the cache’s information, to be quickly addressable. Standard 

operations are about 70% quicker than conventional trees, when handling non-random 

data. Real-world scenarios as file-system caches realize this non-uniform statistic 

because sectors are accessed often sequentially and repeatedly. 

The caching algorithm speeds up the antivirus of about two times, scanning only those 

files that have been previously modified, hypothetically by a virus.  By marking the file 

with a “flag”, it is possible to understand which data could be infected. Each file is 
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marked when being created or modified and unmarked after being scanned. Therefore, 

only marked files are scanned at read access, while unmarked files and writing 

operation are discarded.  

 

A filter could be inserted to restrict the scan to those particular classes of files that are 

targets for viruses like binaries and word macros, skipping metadata and large files (e.g. 

plug&play archive). Since the on-access scan is a synchronous process and interrupts 

the user system while executing, a large amount of data to scan could freeze the 

computer for several seconds. It can be reasonable to use the “dirty flag” to mark a set 

of blocks instead of the whole file, so that just a part gets scanned (e.g. the swap file 

with size around the gigabyte)  

Solutions as enabling the on-access scan only for removable mass-storage devices, by 

means of a tight collaboration with the VMM’s device control, are too risky. Viruses 

could spread to the user system in alternative forms and channels, avoiding both, the 

network protection and the curbed on-access scan (e.g. stenographic exploits and 

encrypted viruses coming over the network).   

The antivirus impact on performance is remarkable when a large amount of data is read. 

When the user system starts, for example, the antivirus slows down the computer of 

several times due to cache building. An interesting idea has been to preload the cache 

content with structures of files read at boot time, such as operating system’s drivers and 

libraries, empirically chosen.  

Finally, the NTFS architecture is still partially obfuscated: neither the source codes nor 

adequate technical information is provided. The difficulty of debugging strange file-
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system behaviours has generated obvious problems in the code implementation. The 

performance is quite bad, because they are damaged by periodical cache rebuilds. These 

are needed to prevent inconsistent states between disk- and cache- contents, whenever 

an unknown writing operation occurs on the file index table.  

 

A sort of transparent proxy has been designed to inspect viruses and malware coming 

over TCP/IP connections, such as emails and web downloads, before they reach the user 

environment. This solution has shown the benefits of scanning inconspicuously any 

user’s network stream from the hidden sub-layer. This is realized independently from 

the physical interface used by the stream to carry out such information.  

This is valid also for encrypted tunnels (VPNs) and SSL-enabled protocols. VPNs could 

be established by the security shell and their content bridged as plain text to the user 

system, after being inspected (and the other way round); while the man-in-the-middle 

attack could be exploited to intercept the SSL-protocols handshaking and to real-time 

decrypt the connection’s content. For completeness, the removable network devices get 

virus protected too, by an appropriate agent that controls their use. Special policies 

define which devices are accepted. Their configuration is realized by the security shell.  

 

Further existing security technologies have found great benefits in this virtualization 

paradigm. The thesis has considered the disk encryption issue as one of the technologies 

worth of investigating. A hidden encryption layer has been embedded to protect at the 

same times both security shell and virtual system from confidentiality attacks. The user 

environment is therefore encrypted “from the outside”.  
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By coupling encryption and virtualization technologies, two evident benefits arise: 

encryption is realized automatically and not visible from the user-system in which no 

configuration or encryption support is required; the disk’s keys are managed 

homogeneously at the central site, independently from the virtual system installed on 

the single computers. 
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Appendix A. Sample code 

Interface between the Clamavis antivirus engine (libclamAV) and the on-access 

scan service 

// Initialize the antivirus engine 

int td_init_avscan(void) 

{ 

   int ret = -1; 

 

   // init globals 

   virusdb = NULL; 

   bzero (&claminfo, sizeof (struct s_info)); 

   strcpy (dbdir, "/var/lib/clamav"); 

 

   // load virus database 

   if((ret = cl_loaddbdir(dbdir, &virusdb, &claminfo.sigs))) 

     { 

  printf("@%s\n", cl_strerror(ret)); 

  free(dbdir); 

  return ret; 

     } 

    

   if(!virusdb) 

     { 

  printf("@Can't initialize the virus database\n"); 

  return ret; 

     } 

    

   if((ret = cl_build(virusdb)) != 0) 

     { 

printf("@Initialization error: %s\n",  cl_strerror(ret)); 

  return ret; 

     } 

 

   // open virus scan 

   char buf[4096]; 

   snprintf(buf, 4096, "/secunet/AVSCAN.log"); 

   AVfd = open(buf, O_CREAT | O_RDWR | O_TRUNC, 0644); 

 

   return 0; // ok 

} 

 

// This is the real interface to the antivirus engine  

int td_avscan (struct sector_list *pSectorList, int BDRVfd,  

              char **virname) 

{ 

   // reverse engineering on eicar.com 

   short otfrec = 1; 

   unsigned short ftype = 500; 

 

   //const char **virname; 
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   int rc; 

 

   // reset status pointer 

   pStatus.element=0; 

   pStatus.offset=0; 

 

   // scan 

   rc = _td_scanlist (pSectorList, BDRVfd, virname,  

                      &claminfo.blocks, virusdb, otfrec, ftype); 

 

   // check output 

   if (rc == CL_VIRUS) 

     { 

  dprintf (AVfd, "* td_avscan(): %s - VIRUS FOUND: %s\n", 

                  pSectorList->m_p_filename, *virname); 

     } 

   else 

     { 

  dprintf (AVfd, "td_avscan(): %s - virus not found\n",  

                   pSectorList->m_p_filename); 

     } 

 

   return rc; 

} 

 

// It retrieves the file’s content for the antivirus engine 

int _td_readn (struct sector_list *pSectorList, int BDRVfd,  

               void *buff, unsigned int count) 

{ 

   unsigned int i        = 0; 

   unsigned int todo     = count; 

   unsigned int done     = 0; 

   unsigned int ret; 

   unsigned long long base_sector_i, nb_sectors_i; 

 

   /* count file size */ 

   unsigned int c; 

   unsigned int tsize = 0; 

 

   // exclude file bigger of 10Mbyte (20.000 sectors) 

   for (c=0 ; c<pSectorList->m_sector_list_size; c++) 

    tsize+= 

      pSectorList->m_p_sector_list_entries[c].m_last_sector- 

      pSectorList->m_p_sector_list_entries[c].m_first_sector; 

    

   if (tsize>20000) 

      { 

  dprintf (AVfd, "* skipping %s (%u MB)\n",  

                     pSectorList->m_p_filename, tsize*512/1000000); 

  return 0; 

      } 

 

   while (todo>0 && (pStatus.element<pSectorList 

                     ->m_sector_list_size)) 

      { 

  base_sector_i= 
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          pSectorList->m_p_sector_list_entries[pStatus.element]. 

          m_first_sector * 512; 

 nb_sectors_i = ( 

          pSectorList->m_p_sector_list_entries[pStatus.element]. 

          m_last_sector  

          -  

          pSectorList->m_p_sector_list_entries[pStatus.element]. 

          m_first_sector 

                     ) * 512; 

 

 // seek to current position 

 lseek (BDRVfd, base_sector_i+pStatus.offset, SEEK_SET); 

 

 if (nb_sectors_i-pStatus.offset > todo)    

     // current element is bigger of what we have to read 

   { 

      if ((ret = read (BDRVfd, buff+done, todo))<0) 

        { 

      dprintf (2, "fatal error while reading sector 

                content %llu for AV\n", base_sector_i+pStatus.offset); 

      return -1; 

        } 

 

      // update I have to still read and I have read so far 

      todo-=ret; 

      done+=ret; 

 

      // increment offset pointer 

      pStatus.offset+=ret; 

   } 

 

     //left sectors on i-element are not enough 

 else  

   { 

 

      if ((ret = read (BDRVfd, buff+done,  

                            nb_sectors_i-pStatus.offset))<0) 

      { 

      dprintf (2, "fatal error while reading sector 

                content %llu for AV\n", base_sector_i+pStatus.offset); 

           return -1; 

      } 

 

      // update I have to still read and I have read so far 

      todo-=ret; 

      done+=ret; 

 

      // set status pointer to next element 

      i++;  

 

          // go to next element 

      pStatus.element++; 

      pStatus.offset=0; 

   } 

     } 
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   return done; 

} 

 

The pre-boot authentication used in the test implementation for disk encryption 

#!/bin/sh 

[cut] 

 

/bin/loadkeys /etc/console/boottime.kmap.gz 

ADMIN=0                 # Admin boolean FLAG 

 

while [ 1 ] 

do 

 PASS=`/bin/dialog --insecure --nocancel --passwordbox  

           "Please enter password" 0 0 3>&1 1>&2 2>&3`  

 /bin/clear 

  

 # check if we have a usb-pen.  

 # yes -> decrypt it 

 # else -> decrypt directly hard-disk 

 USB=`/bin/dmesg|/bin/egrep -e  

      "(sd.*removable|removable.*sd)"|/bin/rev|/bin/cut -f1 -d "  

      "|/bin/rev|/bin/tail -1` 

 

 if [ "$USB" = "" ]; then 

 echo "USB Device NOT found. Going through HD decryption." 

   

 # We don't want administrator to log-in WITHOUT USB 

 /bin/mount -t ext3 /dev/sda7 /mnt # mount boot-partition 

  

# assign loop-device to admincontainer 

      /sbin/losetup /dev/loop0 /mnt/admincontainer    

 

      echo $PASS| 

      /sbin/cryptsetup luksOpen /dev/loop0 admincontainer -T 1 

  

 if [ $? = 0 ]; then     # admin 

  echo "DEBUG (TO DELETE AND GIVE GENERIC ERROR):  

                  Admin access is permitted only via USB" 

  

  /sbin/cryptsetup luksClose admincontainer 

  /sbin/losetup -d /dev/loop0 

  /bin/umount /mnt 

  continue 

  

 else            # user 

   # unlock / 

        echo $PASS|/sbin/cryptsetup luksOpen /dev/sda3 cryptoroot 

    if [ $? = 0 ]; then      

     break      # password correct -> we have finished 

    else 

     continue   # password wrong -> ask another passwd 

        fi 

 fi 
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 else 

    USB=$USB"1"  # concat 1 to hd? /sd? 

    echo "USB device FOUND: $USB" 

     

# unlock the usbstick 

   echo $PASS|/sbin/cryptsetup luksOpen /dev/$USB cryptoUsb         

        

if [ $? != 0 ]; then     # the USB password is WRONG 

                  continue # ask another passwd 

    fi 

  

# mount usbstick 

  /bin/mount -t ext3 -o ro /dev/mapper/cryptoUsb /mnt              

   

  USER=`/bin/cat /mnt/username` 

  if [ $USER = "admin" ]; then 

        echo "Hello Administrator :-)" 

    

       # now we have only one system (easier test procedure) 

    PASS=`/bin/cat /mnt/passwd|/bin/cut -d : -f 2`           

  

# unlock / 

echo $PASS|/sbin/cryptsetup luksOpen /dev/sda3 cryptoroot  

 

  if [ $? != 0 ]; then     # wrong 

   echo 

  echo "ERROR: system password mismatch or user not allowed." 

   echo "--- SHUTTING DOWN ---" 

   echo 

   /bin/sleep 5 

   /sbin/halt -f –p 

 

  else    # passwd correct 

   # close the usb key 

      /bin/umount -f /mnt 

     /sbin/cryptsetup luksClose cryptoUsb 

       

      # ask for downgrading to normal user 

       dialog --defaultno --no-shadow --yesno  

"Hello Admin!  Put usb in a secure place. 

Satisfied with User-Rights?"  

            0 0 3>&1 1>&2 2>&3 

   

      if [ $? = 0 ]; then # yes 

    /bin/clear 

    echo "Ok! Your rights will be downgraded to  

                            User-Rights for this session." 

      

   else                 # Admin wants to be Admin  

    /bin/mount -t ext3 /dev/sda7 /mnt   

    /sbin/losetup /dev/loop0 /mnt/admincontainer 

    # assign loop-device to admincontainer 

    

    echo $PASS|/sbin/cryptsetup  

luksOpen /dev/loop0 admincontainer -T 1 
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    if [ $? != 0 ]; then   # just for debugging 

       echo 

       echo "ERROR: can't unlock admincontainer!" 

                     echo "--- SHUTTING DOWN ---" 

                     echo 

        /bin/sleep 5 

        /sbin/halt -f -p 

    fi 

       

ADMIN=1 

   fi 

       

     # we have finished 

      Break 

fi 

fi 

fi  

  

done  

 

PASS= # overwrite the password string 

 

if [ $ADMIN -eq 1 ]; then 

echo 0 > /proc/splash 

   /bin/clear 

  echo -e "\033[01;32m*** Booting in Admin mode ***\033[01;37m" 

fi 
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