
 1

Security by virtualization

A novel antivirus for personal computers

Balduzzi Marco, 2nd of March 2007

Master Thesis in Computer Engineering, University of Bergamo

 2

This page has been left intentionally blank.

 3

Content

1. Introduction .. 5

1.1. Motivations... 6

2. Security by virtualization.. 10

2.1. Introduction to computer virtualization.. 10

2.2. Virtualization approach to security .. 16

3. Virus protection .. 20

4. Image scan .. 25

4.1. File repair.. 32

5. On-access scan.. 39

5.1. File organization ... 48

5.2. Cache design... 54

5.3. Antivirus integration... 68

5.4. Testing .. 71

6. Network scan .. 77

6.1. VPNs... 79

6.2. TLS/SSL and SSH protocols .. 84

6.3. Removable network devices... 91

7. Further security with disk encryption... 98

7.1. Design... 107

7.2. Implementation... 113

8. Conclusions .. 118

 4

Appendix A. Sample code ... 123

Appendix B. Index of figures and tables ... 129

Appendix C. References .. 131

 5

1. Introduction

A sort of virtualization appeared four decades ago to perform multi-programming and

simple time-sharing tasks inside a single mainframe. Virtualization became quickly the

solution to limit cost and save money by server consolidation: aggregate the workload

of several under-utilized servers to fewer machines reduces hardware and management

resources. Nowadays virtualization is a “hot topic”, being habitually adopted in develop

environment for testing and debugging purposes.

A novel paradigm to secure personal computers is presented. Virtualization creates

inside a second operating system (security shell) an isolated and encapsulated

environment, in which the user system is moved and protected. The security layer is

decoupled in this inaccessible system that, through special services, ensures the user

environment’s tamper resistance. The security policies defined by administration are

deployed from a central site to the single computer and locally enforced.

While conventional personal antivirus can be switched off, manipulated, or avoided by

sophisticated malign codes and technically experienced users, the antivirus designed in

the security shell enforces a continuous protection of the user environment, against

viruses and malware.

Three complementary services are run: the virtual disk is scanned on demand or

together with computer start-up and backup policies; the network connections

established over embedded and removable devices, as well as encrypted protocols, are

inconspicuously inspected before reaching the user environment; and the file-system

accesses to disk and removable mass-storage are scanned for real-time viruses.

 6

The latter component (on-access scan) analyzes the content of files as they are accessed

by the virtual environment. A special driver installed into virtual machine intercepts the

disk operations and builds a logical representation of files’ structure. With the read

access of an application or a system service, a reference to involved blocks is inserted or

looked up in a cache. The antivirus uses the cache’s information to address the data for

scanning. This cache should be efficient and fast enough to not waste memory or

“bottleneck” the user system. At the same time, a robust cache avoids hangs and

problems of synchronization and inconsistency.

Further existing security technologies benefit of virtualization, e.g. disk encryption. An

embedded layer encrypts inconspicuously the user system, requiring no configuration or

encryption support. A pre-boot authentication secures the access to whole personal

computer.

1.1. Motivations

The goals of information security are described by the CIA paradigm, in terms of

confidentiality, integrity, and availability. Confidentiality is defined as “ensuring that

information is accessible only to those authorized to have access” and is traditionally

represented as a relation between user and system. Cryptography is usually used to

protect the confidentiality of stored and transmitted data.

Integrity is the system’s ability to protect information from unauthorized modifications.

In particular, this attribute assures that transmitted data are not altered and that the

sender is who it is supposed to be. The encryption’s digital signature and hashing are

traditional solutions to provide integrity.

 7

Availability is the system’s capacity to offer to user a sure and immediate access to own

resources: data and services have to be immediately available when required.

Redundant network architecture, high-availability protocols, and hardware with more

failure points ensure this attribute.

The CIA paradigm, despite of its linear and simple definitions, represents an “ideal

world”; in real applications, complex and obfuscated issues arise and security is an “a

priori” lost challenge. No solution establishes a complete protection against threats

crashing against the computer infrastructure: unqualified users, newbie, evil users,

viruses, and worms try out constantly the computer’s CIA triad. Many scenarios can be

proved.

When a laptop is lost or stolen, any information is easy to be extracted by passing any

form of authentication: the hard disk can be installed into a second computer for being

read, or the system can be started with a “live-CD” and data accessed. Disk encryption

is considered a good solution to protect the confidentiality of personal computers, where

the operating system offers this feature. However, quite few of them enable complete

disk encryption1, as metadata resources, temporary files and swap partition, and

commercial products are often too expensive solutions to be adopted.

1 E.g. Windows 2000, 2003 and XP support just a simple “file-system encryption” enabling specific

folders and file to be encrypted, while the new Windows Vista embeds a “disk encryption” features

termed BitLocker.

 8

Encryption is used in network communications too, where special tools (e.g. sniffers)

permit to an evil user to intercept the transmitted data and analyze it for confidential

information as account, email, and credit card number. VPNs and cryptographic

protocols as TLS/SSL are widely used for secure transmitted information’s

confidentiality and integrity. On the other hand, encrypted streams (especially those

“handled” at application-layer) are not protected against viruses and malware because

their content cannot be analyzed by the antivirus located in the network sub-layer.

Virus protections are threatened by user acts too: personal antivirus can be switched off,

manipulated and avoided by intelligent malign codes and technically skilled users, so

that the system stays unprotected and exposed to easy threats and attacks.

System confidentiality could be compromised just by a single “click” that involuntarily

connects the user to “untrusted” networks: usually, computer users are not technicians,

so they could be easily cheated for using special crafted hotspots configured as traps,

and sending confidential information to them. User data is stolen and confidentiality is

violated.

Similarly, personal firewall could be badly tailored by unqualified users that react

inadequately to the firewall’s “questions”. In fact, the firewall filters the network

connections using an application access-list interactively populated via user interaction:

once a specific application is user-permitted, all traffic “related” to it is accepted.

Nimbly, a negligent and distracted user’s behaviour exposes the system to risks as

remote exploiting and denial-of-services.

Protecting network usages is a primary need as well as enforcing a strict control of

devices. The ability of users to add new hot-plug hardware, such as USB-sticks, does

 9

not only make computers harder to maintain when users use them to install unsupported

hardware, but they can pose threats to data security. A malicious user can potentially

use a removable storage device to steal confidential information. An attacker also could

“autorun” custom scripts stored on the device, installing malicious software such as

spyware and Trojan-horses.

Virtualization is the answer to these security issues. Decoupling the security layer from

the user system into an isolated and hardened shell prevents the exploiting of security

functions and the subverting of security policies. Attacks to the CIA paradigm are

inhibited: evil users, viruses, and malware acting with “administrator privileges” are

inoffensive. By virtualization, the security services are not directly attackable, unless

the security shell is compromised. In this way, the user environment is constantly

monitored and secured from a set of external services.

This thesis is organized as follows. In chapter 2, the conventional application of

virtualization technology and its new paradigm to secure personal computer are

presented. In chapter 3, the novel antivirus approach is illustrated. The next three

chapters deepen design and implementation of this virus protection: image scan, on-

access scan, and network scan components are described. Chapter 7 proposes disk

encryption as an evident benefit of coupling virtualization with existing security

technologies. The last chapter summarises main challenges and open issues.

 10

2. Security by virtualization

2.1. Introduction to computer virtualization

Computer virtualization allows running multiple operating system instances

concurrently on a unique host computer, decoupling the hardware requirements from a

single system and making it available to the whole “community” of operating systems.

The virtual OS is managed by a special Virtual Machine Monitor (VMM) application,

located between hardware and guests that provides a layer of abstraction for the

computer hardware. Virtual machines create virtual devices as CPU, memory, network

and storage to assign to the guest OS. By virtualization it is possible to control the

access to hardware devices, enabling specific sets of devices for each guest OS. For

example, it is possible to assign network devices to a system operating via network and

hide them from a local one. At the same time, the second guest would require access to

USB devices and multiple processors for heavy computational application. Virtual

machines can provide the illusion of hardware, or hardware configuration that is not

installed (such as SCSI devices) and be used to simulate special network infrastructures

and scenario, for distributed applications.

Virtualization allows limiting and controlling the resources assigned to each guest. This

distribution eliminates the danger of a single runaway process, consuming all available

memory or CPU. On the other hand, it permits to assign more resource to greedy

systems for specific applications. Since the guest is not bound to the hardware, it

becomes possible to dynamically move an operating system from one physical machine

to another. As a particular guest OS begins to consume more resources, during a peak

 11

period, the offending guest can be moved to another server with less demand. With

virtual deployments, it is possible to relocate an operating system to receive the

resources needed at that time.

Virtual machines have been historically used for server consolidation purpose,

aggregating the workloads of several under-utilized servers to fewer machines, perhaps

a single machine. Nearly all mainframes have the ability to host multiple operating

systems and thereby operate not as a single computer but as a number of virtual

machines. In this role, a single mainframe can replace dozens or even hundreds of

smaller servers. Sometime, the need of running legacy applications that does not run on

newer hardware/OS and require very few resources is served well by virtualization

technology. Benefits are related to saving hardware resources, reducing installation,

management, and administration costs, while providing greatly improved scalability and

reliability.

Virtualization provides independent and isolated environment, for running operating

system with different levels of trust or critical applications. When a guest is virtualized,

the hardware devices and resources are confined and protected; no interaction among

different guests or host computer is possible. In the newer system, as Microsoft Vista,

the virtual machine is loaded on the fly, creating such an execution environment

dynamically, for encapsulate components considered vulnerable, as internet browsers

and relative downloads.

 12

Virtualization is also important to developers. Operating system’s kernel occupies a

single address space, which means that a failure of any driver results in the entire

operating system crash. Using a virtual machine is possible to debug a kernel code

similar to a standard application, restarting the execution from the host system. It is also

possible to intercept device accesses, debugging their usage.

History and types

A sort of virtualization has been used since four decades ago, when Compatible Time

Sharing System developed by the Massachusetts Institute of Technology was adapted

for the IBM 704 mainframe. This system, splitting the CPU time in quantum (atomic

entities assigned to single work), permitted the concurrent execution of multiple task, as

independently user shells. IBM understood the importance of concurrency, offering

much more services while keeping the same hardware and succeeding in cost reduction

optimization. The virtualization as it is known to us was implemented in the Model 67,

where all the hardware interfaces where virtualized through a Virtual Machine Monitor.

In the following years, quite many approaches to virtualization were proposed, and

nowadays the same results are achieved in several ways through different levels of

abstraction. Among all, at least the following four types are remarkable:

- hardware emulation consists in emulating the complete set of CPU instructions for a

desired architecture. With this approach it is possible to run unmodified operating

systems intended for a different platform, for example ARM on an x86 processor

host. Hardware emulation is used for firmware development: rather than wait until

the real hardware is available, hardware VM supports the validation of many aspects

 13

of the actual code in simulation. The trade-off is a significant performance hit: in

fact, modelling a fairly complete architecture in software is extremely slow. Bosch1

is such a kind of emulator;

- full (native) virtualization, known briefly as virtualization, uses a virtual machine

monitor that mediates between the guest operating systems and the native hardware.

Certain protected instructions must be trapped and handled within the VMM because

the underlying hardware is not owned by an operating system but is instead shared

by it through the VMM. Unmodified operating systems are run; the underlying

hardware must be natively supported. The full virtualization is a good trade-off

between performance and capabilities; currently it is the most used type of

virtualization (VMWare2);

- para-virtualization is the most recent approach, currently supported by many vendors

as XEN3, and consists in integrating the virtualization-aware code into the operating

system itself, increasing the performance nearly to that of a native system. The

disadvantage is that para-virtualization requires the guest operating systems to be

modified for the VMM. Intel and AMD recently support this technology in

hardware4, permitting extremely fast execution of unmodified guests. Para-

virtualization it is expected to be the solution for future;

1 Bosch IA-32 emulator is freeing downloadable from http://bochs.sourceforge.net/. It’s Free Software

2 VMWare virtualization, http://www.vmware.com/

3 XEN software homepage is http://www.xensource.com/

4 Intel VT (http://developer.intel.com/technology/virtualization/index.htm) and AMD Pacifica

(http://enterprise.amd.com/us-en/Solutions/Consolidation/virtualization.aspx)

 14

- APIs virtualization: since applications generally run in user sub-layer and

communicate with the OS via a set of APIs, this strategy consists in intercepting and

emulating the behaviour of this APIs using facilities in the existing OS. A pleasant

side effect is that application binaries can be run natively. On the negative side, this

approach works for running a single application or operating system, for which a

special implementation has been done. Wine1 is a well-known project making use of

APIs virtualization for running Windows applications.

Performance test
2

This section presents the result of a performance test run on five different virtual

machines3, in which the Innotek VBOX 1.1.6 product has been used as reference and a

standard personal computer4 configuration has been adopted.

1 Wine project homepage is http://www.winehq.com/. It’s Free Software

2 Pass Mark Software Pty Ltd, Performance Test 6.0, http://www.passmark.com/

3 The evaluated VMM are:

- Innotek VBOX, Version 1.1.6 (18 April 2006) and 1.1.10 (28 July 2006)

- VMWare Workstation 5.5.1 (build-19175)

- QEMU 0.8.2 (22 July 2006) with and without accelerator (KQEMU)

4 The personal computer is configured with:

- Processor: Intel(R) Pentium(R) 4 CPU 2.80GHz (5630.34 bogomips)

- Memory: 1Gb RAM (Windows has been virtualized with 256Mb RAM)

- Hard disk: Maxtor 4D040H2, 40Gb, 2Mb Cache, UDMA-100

- VGA card: Elsa Erazor III LT equipped with a RIVA TNT2 Model 64

 15

All the virtual machine suites have accomplished good results regarding the CPU and

memory management, while the 2D marks are in average worse. However, the bad

graphic result could be acceptable for standard computer applications, as office and

internet, where the system is presumed to run.

Globally the VMWare suite and newer version of VBOX ran quite well, losing

respectively 22% and 33% of performance in comparison with a native Windows.

QEMU is much more slowly, especially when the accelerator module is not enabled.

Anyway, this product has represented a good software asset for research and test

purposes: the free license has permitted to hack the code, integrating QEMU in antivirus

service. In particular, QEMU has been modified to handle antivirus cache’s structures.

Completed the research phase, commercial solutions will be adopted, integrating a

faster and more reliable virtual machine.

 16

Figure 1 - VMM performance test

2.2. Virtualization approach to security

Information that once has been stored exclusively on mainframes is now distributed on

the network among several personal computers. Thin clients that were used to access

central managed resources are now equipped with a robust workspace: local

applications and data. The high costs that have compelled for asset aggregation are no

longer a constraint to many single installations. Virtualization that has traditionally been

used for server consolidation purposes is here involved in securing personal computers.

 17

The security of the whole computer infrastructure is achieved by protecting each single

host through a local virtualization.

Virtualization makes it possible decoupling security services and user environment:

security is deployed in a separate second operating system (security shell), over which

the user system runs virtualized. Virtualization creates an isolated and encapsulated

environment that protects the user system by various services of the security shell. This

detached shell is invisible and inaccessible from the top, and the user environment

behaves just as a standard personal computer with a hidden security sub-layer.

Figure 2 – The new virtualization paradigm

Securing the user system from an isolated sub-layer ensures its tamper resistance: not

even a privileged user can exploit the system’s security functionalities placed into a

 18

hidden and decoupled environment. In fact the interaction with the security shell is

handled via especially protected channels: the user control center as interface for the

user and the security agent to communicate with the central management system.

The security policies define the valid behaviour of the user system and are distributed

from a central site to each single computer, where the local agent is responsible to

enforce them through various security services embedded into the shell. Numerous

aspects of security can be hardened by administrators. A network connection component

enforces a real-time firewall, limiting the access to trusted network resources. The

antivirus, as will exhaustively presented in the next chapters, performs a continuous

virus protection of the user system for viruses and malware coming over disparate

channels as networks and removable mass-storage devices. The image scanning should

be performed offline to avoid inconsistency problems. For this reason, it is usually

coupled with the boot and backup processes. The disk encryption feature secures

computer against theft and loss, while protecting data confidentiality from unauthorized

access. Encryption is realized automatically and inconspicuously to user-system in

which no configuration or encryption support is required. Encryption’s keys could be

managed remotely, enabling a secure recovering procedure. The virtual machine is

extended with a device control mechanism that wraps the removable device usage and

avoids a malign use, e.g. installing illegitimate software or stealing confidential

information.

 19

Figure 3 - Security and system management

Virtualization enables the homogeneous management of disparate personal computers

by hiding the differences among user systems with a standard interface: Windows,

GNU/Linux, or Solaris run over the security shell for being together managed. The

management of system- and security- components can be tightly integrated into the

same interface. Different policies, regarding security and system, could be aggregated

and deployed at the same time.

 20

3. Virus protection

Personal computers, in particular those configured with the Windows OS, are

increasingly threatened by viruses and malware, spreading over email, http download,

and external mass-storage devices, such as USB-sticks and floppy disks. The worldwide

spread of Microsoft applications and standard Internet suites has encouraged virus

coders to consider them as preferable targets, obtaining more visibility and damages.

For many years, the answer of antivirus software houses has been personal antivirus,

tailored for the user environment and installed as system service.

Since malign code’s classification is nowadays quite confused due to the rapid

evolution of threat techniques, here is given a personal and simple taxonomy, used as

reference of the rest of work. A virus is a computer program that distributes copies of

itself, installing itself in special locations executed at computer power-on, as the hard

disk boot sector and the init scripts of operating system, or infecting clean files as

binaries and word documents (macro virus); the virus should be executed to become

dangerous. A malware represents a larger class of evil software, mostly spread over

network channels and infect remote computer exploiting known vulnerabilities. To this

category belong worms, as portable codes using computer networks and security flaws

to create copy of them self, spywares and diallers that are unwanted advertising-

supported software, activated automatically to present advertises or dialup premium-rate

numbers, and Trojan-horses, “back-doors” that consent hidden connections to infected

computer.

 21

In conventional virus protection, an antivirus driver lies into the operating system as

kernel service, integrated between system libraries and file-system layer. The personal

antivirus console is used for its management from the user environment. This driver

intercepts operations on files, coming from the user environment over the WINDLL on

the file-system. At each reading access, application’s code execution is temporarily

arrested and the involved data blocks are virus scanned. After it, the scanner releases

those blocks.

Figure 4 - Personal antivirus approach

In today’s threat landscape, personal antivirus alone in the user environment is an

insufficient protection. Since it can be switched off, manipulated, or avoided by

intelligent malign codes and technically skilled users, the system becomes unprotected

and exposed to easy threats and attacks, compromising both user and network security.

 22

Figure 5 – Novel antivirus approach

In contrast to personal antivirus, the solution discussed here uncouples the virus

protection from the user OS into the separate, invisible and inaccessible security shell

(secureOS). Virtualization is used for the separation of the two systems. The antivirus

components are administrable by the user, through the secure communication channel

of the user control center. For this reason, the security shell should be hardened against

attacks and unauthorized accesses.

This virus scanner is therefore not directly attackable from the top by evil users and

malicious codes: voluntary shutdown or protection-avoiding are no longer conceivable.

The user system is continuously inspected for viruses and malware coming potentially

from different sources, as network connections and mass-storage devices, warranting a

steadily high security protection.

 23

Figure 6 - Novel antivirus design

A security agent oversees the antivirus service, deploying the antivirus policy defined at

central side, and managing the communication to the user. The user system is protected

against threats coming over network channels and mass-storage devices. Moreover, the

system is regularly scanned and virus-free backups are guaranteed. Three classes of

antivirus services are achieved:

- image scan: the virtualized system, including Windows core components,

applications and user documents, is fully scanned at user demand, computer boot

(shutdown), or in conjunction with backup policies;

- on-access scan: this innovative feature realizes a virus protection of files at access

time. With the reading access of an application and a system service on the file-

 24

system, the involved data blocks are examined by the security shell. A customized

driver, installed into the virtual machine, intercepts the virtual disk’s operation and

builds a logical representation of the file’s structure. This permits to scan its content

as it is accessed by the user;

- network scan: the security shell embeds a sort of transparent proxy that inspects any

TCP/IP connection’s data, such as email and http download, before it reaches the

user environment. Encrypted streams like VPNs and SSL-enabled protocols are

scanned too. Network scan protects both the local computer and connected LAN

segments from viruses and malware.

 25

4. Image scan

Image scan allows to virus-scan a completely virtualized operating system by the

security shell, including the user’s applications, configurations, and personal data.

Image scan permits to secure backup copies, cleaned from virus infections, in order to

restore the entire user environment if compromised; it could be seen as a security

feature applied to the snapshot technology. Moreover, image scan can be integrated in

the computer boot to assure system cleanness, and in the shutdown to avoid time

wasting. In fact, a mandatory shutdown prevents inconsistent states. During the scan

activity, the disk image could become easily inconsistent with the real content, due to

the possible modifications carried out by the user environment. On the contrary, the

antivirus “reparations” to the disk’s content could damage the state of the user system.

The user system resides on a virtual disk, represented within the secureOS as a unique

file, whose size is the same of the emulated disk drive. The first partition (C:) begins at

the 63rd sector, while the preceding contain the MBR and the partition table, as in a

normal hard disk structure; afterwards, the disk image could contain additional

partitions. This type of disk image is known as raw-format, and it is the simplest one:

data are written serially and the file is directly managed from the kernel driver as a

normal hard disk. For its simplicity, the raw-format is immediately accessible from any

GNU/Linux system.

The fdisk command shows the structure of the VM image, which contains a single

NTFS Windows image of 3GB (3140896 blocks):

 26

fdisk -l -u marco.img

Disk marco.img: 0 MB, 0 bytes

128 heads, 63 sectors/track, 0 cylinders, total 0 sectors

Units = sectors of 1 * 512 = 512 bytes

 Boot Start End Blocks Id System

marco.img1 * 63 6281855 3140896+ 7 HPFS/NTFS

Other advanced formats have better performance, but are more complex to handle and

to debug. The QEMU software community has developed an advanced image format

called QCOW1, which provides a smaller file size, even on file-systems that do not

support holes (e.g. sparse files), optional zlib2 based compression and AES3 encryption.

However, neither compression nor encryption are required, since personal computers

normally run a single guest operating system and the entire secureOS (in which the VM

image is stored) is already encrypted. For these reasons, the raw-format has been used,

as confirmed by the qemu-img command:

qemu-img info /secunet/marco.img

image: /secunet/marco.img

file format: raw

virtual size: 2Gb - disk size: 2Gb

1 The QCOW Image Format, http://www.gnome.org/~markmc/qcow-image-format.html

2 Zlib compression library, free-software, http://www.zlib.net/

3 Advanced Encryption Standard (AES) block cipher

 27

Linux comes with FAT read-write and NTFS read-only file-systems support, permitting

to mount Windows partitions in a secure way. By kernel the device loop-back

mechanism1 and the device driver capabilities, the Windows image is associated to the

loop0 device (the first partition starts after 63*512 bytes), and subsequently mounted

under /mnt/winOS as read-only:

losetup -o $((63*512)) /dev/loop/0 /secunet/marco.img

mount -o ro /dev/loop0 /mnt/winOS/

Once Windows image is mounted, the entire user system can be access from the

security shell as a local file-system to be virus scanned.

Clamavis2 antivirus has been used for research and test purposes. This toolkit is

distributed as open source and can be modified due to its Free license. The engine

framework (the libclamAV library) has been adapted and integrated in the on-access

scan. The clamscan virus scanner has been used in the image scan research.

Clamavis have run on a standard personal system, configured with Microsoft Windows

XP and Office, for a size of 2G, and has taken about a quarter of hour. The test

environment is virus-free.

1 Device node that represents a regular file, http://en.wikipedia.org/wiki/Loop_device

2 ClamAV project homepage is http://www.clamav.net/

 28

clamscan --verbose --recursive --log FULL-SCAN.log /mnt/winOS/

/mnt/winOS/AUTOEXEC.BAT: Empty file

Scanning /mnt/winOS/boot.ini

/mnt/winOS/boot.ini: OK

Scanning /mnt/winOS/bootfont.bin

/mnt/winOS/bootfont.bin: OK

/mnt/winOS/CONFIG.SYS: Empty file

/mnt/winOS/MSDOS.SYS: Empty file

Scanning /mnt/winOS/NTDETECT.COM

/mnt/winOS/NTDETECT.COM: OK

[...]

----------- SCAN SUMMARY -----------

Known viruses: 76052

Engine version: 0.88.4

Scanned directories: 593

Scanned files: 7325

Infected files: 0

Data scanned: 2214.39 MB

Time: 980.635 sec (16 m 20 s)

From a careful analysis, a big problem arises and forces Windows to temporary

hibernation1, during the full image.

1 Hibernate is a feature seen in many operating systems where the contents of RAM is written to non-

volatile storage, such as the hard disk before powering off the system. Later the system can be restored to

the state it was in when hibernating, so that programs can continue executing as if nothing happened.

From http://en.wikipedia.org/wiki/Hibernate_(OS_feature).

 29

When the Windows image is mounted with the mount command, the Linux’s VFS

Layer1 accesses the loop-back device (/dev/loop0 in example) and builds an appropriate

cache for data currently available on the image. Therefore, through a secure and sturdy

mechanism, the user system is available as a local file-system to the secureOS

environment for reading/writing operations. Processes can safety access the image’s

data from this location, by VFS layer.

Figure 7 - Linux Virtual File-system (VFS)

1 Virtual file-system is a kernel software that handles all system calls related to a standard Unix file-

system. Its main strength is providing a common interface to several kinds of file-systems.

 30

However, whatever an external process modifies the image, the antivirus cache becomes

immediately inconsistent. For example, when a file is created/modified by the user

system, the virtual machine updates the image’s content and the Windows file-system

layer is correctly updated to address the new data location. The antivirus cache, instead,

cannot be updated: the writing has been done on the disk, skipping the Linux virtual

file-system. Therefore, new files are not addresses from the security shell: they

physically exist on the image file, but are completely invisible to a list command.

The following test shows how a bar.txt document is accessible only after remounting

user image:

ls -l /mnt/winOS/Dokumente\ und\ Einstellungen/embyte/Desktop/

-r-------- 2 root root 0 2006-09-26 14:02 foo.txt

mount -o remount /dev/loop0

v /mnt/winOS/Dokumente\ und\ Einstellungen/embyte/Desktop/

-r-------- 2 root root 11 2006-11-17 14:40 bar.txt

-r-------- 2 root root 0 2006-09-26 14:02 foo.txt

Any file-system operation realized from Windows, as file creation, modification,

movement, deletion, is not captured from the security shell.

Due to the large time required by the image-scan, this condition of inconsistency is not

acceptable, because it easily generates read failures. New viruses, malware, and infected

files are not identified, reducing antivirus protection and effectiveness.

Moreover, when a virus is found and the antivirus tries to repair / delete the infected

data, possible file-system corruptions (loss of files) could occur, compromising user

 31

documents and the entire Windows system! If a writing occurs on the image while

Windows is running, the NTFS cache becomes inconsistence and serious data losses

occur.

To prevent unwanted problems, Windows system must be hibernated before an image-

scan and it must be restarted as soon as the AV have finished. The image scan must run

offline. A graphical interface should be prompted to the user, with information

regarding the scan process (at least a progress bar and some status lines).

Alternatively, a scan could be accomplished during the Windows start-up (and/or

shutdown) to assure the system’s cleanness; it is sufficient to modify the boot (halt)

sequence, introducing the security check of Antivirus before (after) the VMM start

(stop).

In addition, the integration with the backup service is hypothetical. Image scan permits

to secure backup copies from virus infections, in order to restore the entire user

environment if compromised; it could be seen as a security feature applied to the

snapshot technology.

 32

4.1. File repair

Up to here, it has been discussed how to scan the entire user system, transparently and

efficiently from the security shell in order to discover the existence of viruses and

malware. The image file is simply mapped to a loop-back device and mounted

somewhere in the secureOS file-system. To prevent unwanted error conditions, such as

synchronization problems and data losses, the image must be scanned offline,

prompting the user with an informative GUI and integrating the image scan with backup

or boot processes.

However, what happens if a virus is found or a file is marked as infected? The antivirus

normally offers the possibility to delete and to repair infected files. Otherwise, when

viruses compromise a healthy file, the virus code is added to the original file somewhere

not known before. Some bytes can also be overwritten and substituted with malign ones.

Often, infected file appears more as garbage than meaningful information, making the

file repair process much harder. Virus-files instead are completely malign code and

should be immediately removed by antivirus.

Because of the difficulties to repair infected files (clean malign code and rebuild a

healthy file), Clam antivirus does not provide this file repair feature. Instead, it offers

the possibility to remove infected files and viruses (by the command line -remove

option). This should be carefully used, because it implies the possibility to delete

 33

healthy files when a false positive occurs. The same problem occurs in Network IPS1,

where network connections are dropped down when an exploit signature is matched.

This issue is widely studied in both Antivirus and Intrusion Detection System research

areas.

Clamscan has been tested with “EICAR Standard Anti-Virus Test File”2 to verify its

ability to identify and delete viruses and malware. EICAR is a legitimate DOS program

that produces a sensible result when run (it prints the message "EICAR-STANDARD-

ANTIVIRUS-TEST-FILE!"). It is also short and simple. In fact, it consists entirely of

printable ASCII characters, so that it can easily be created with a regular text editor.

Any anti-virus product that supports the EICAR test file should detect it in any file

providing that the file starts with the following 68 characters, and is exactly 68 bytes

long:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Clamscan correctly identify and remove EICAR test file:

clamscan --verbose --remove eicar-clone.com

Scanning eicar-clone.com

eicar-clone.com: Eicar-Test-Signature FOUND

eicar-clone.com: Removed

1 A Network IDS is a system that tries to detect malicious activity such as denial of service attacks, port-

scans or even attempts to crack into computers by monitoring network traffic and compare it to a well-

known database of attack signatures. A Network IPS is an extension that “reacts” to positive results, e.g.

dropping the connections.

2 The Anti-Virus or Anti-Malware test file, http://www.eicar.org/anti_virus_test_file.htm

 34

----------- SCAN SUMMARY -----------

Known viruses: 77136

Engine version: 0.88.4

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.00 MB

Time: 1.589 sec (0 m 1 s)

Due to the extreme difficulties of repair infected files, many antivirus go through the

easier and simpler solution to remove them, immediately. The deletion a file requires

the file-system’s write support and sufficient account privileges. Therefore, Windows

image must be mounted from secureOS antivirus agent with read/write support: when

AV file repair is enabled, Windows file-system (FAT or NTFS) write support is

required!

The contribution of Free Software community

As already said in previous paragraphs, Linux integrates special drivers, which permit

fast, reliable, and secure access to Windows file-systems through the Virtual File-

System architecture. In particular, the current VFAT/FAT32 driver has been rewrite

from Gordon Chaffee1, researcher in the Berkeley Multimedia Research Centre. The

1 Linux VFAT/FAT32, http://bmrc.berkeley.edu/people/chaffee/fat32.html

 35

driver is completely compatible with the Windows native one (full support) and allows

either read and write operations, as file creation, modification, renaming, deletion.

On the other hand, the NTFS driver included in Vanilla Kernel-tree1, originally

established in 1995 by Martin von Loewis and now maintained by the Linux-NTFS-

Project2, features a good read support but partial and experimental write capabilities. It

allows reading of files and rewriting existing files, but does not support creation of new

files or deletion of existing files.

In 2002, S. Szakacsits joined the project, and worked on many areas, among others, he

engineered ntfsresize that was the first open source NTFS software capable of heavy

NTFS metadata modifications safely. While A. Altaparmakov rewrote driver and user

space utilities from scratch, to support the new NTFS versions (Windows 2000 and

Windows XP), Szakacsits kept working on the open source code base. On July in 2006

was released NTFS-3G3, a full read-write NTFS driver that represented major

functional and quality improvement to ntfsmount. NTFS-3G provides safe and fast

handling of the new Windows file-systems operations, as file/directory creation,

deletion, renaming, movement, etc...

1 Vanilla is the official Linux Kernel, http://www.kernel.org/

2 From project homepage http://www.linux-ntfs.org/: “The goals of the Linux-NTFS project are to

develop reliable and full feature access to NTFS by the Linux kernel driver, and by a user space file-

system (ntfsmount), and to provide a wide collection of NTFS utilities (ntfsprogs) and a developer's

library (libntfs) for other GPLed programs.“

3 The 3rd generation of NTFS driver, http://www.ntfs-3g.org/

 36

At the time of writing this thesis, the 3rd generation of NTFS driver (NTFS-3G) is in

BETA status and it has not yet been included in Vanilla Kernel-tree. However, no driver

crashes or data loss was experienced during the last month’s heavy quality testing, so it

is reasonable to use NTFS-3G write support for remove viruses and infected files during

antivirus image scan.

The installation of NTFS-3G is quite easy. The driver makes use of File-system

userspace library (FUSE1), which implements a fully functional file-system as a

standard program. FUSE is implemented in Linux Kernel as a File-system wrapper to

the VFS Layer. When a program makes use of the FUSE framework, each file-system

operation (like the stat() method shown in figure) is redirect from VFS to user-space

library libfuse that operate as “abstract class” for the user file-system.

1 File-system in Userspace, http://fuse.sourceforge.net/

 37

Figure 8 - FUSE Architecture - The stat() file-system call

FUSE was originally developed to support AVFS and it has become a separate project,

featuring a simple API, a secure and stable implementation and an easy installation.

FUSE driver is included in Linux Kernel from 2.6.15 version, and is compiled (fuse.ko

module) enabling File-system in Userspace support option. NTFS-3G has been recently

merged in Debian Unstable distribution and it is easily installable via this apt-get

command:

apt-get install ntfs-3g

 38

The 3rd generation of NTFS drivers and the excellent native FAT support permit to

mount Windows partitions, reading and writing safely; file repair is used to remove

viruses and repair infected files.

This chapter has presented the image scan feature, used to virus-scan the entire

Windows user system from the lower layer of security shell. Mapping the virtual image

as a loopback device and accessing by kernel file-system drivers, Linux permits to

browse and to scan the user file-system. The new NTFS driver has safe writing

capabilities, enabling the antivirus to remove and to “fix” infected files. To prevent

inconsistent states, the image scan should run offline, e.g. at computer boot to assure

system cleanness, or together with a backup process to secure backup copies from

viruses. In fact, while the system is running, the disk image could become easily

inconsistent with the real content, due to the possible modifications carried out by the

user environment. On the other hand, antivirus “reparations” to the disk’s content could

damage the state of the user system.

 39

5. On-access scan

On-access scan is an innovative idea in the antivirus research field, which aims at

protecting the user system, while preventing the antivirus to be manipulated. In fact,

traditional antivirus products could be deactivated, faked, or avoided by intelligent

malign codes and technically skilled users. On-access scan instead is tamper-proof and

realizes a continuous virus protection of the virtual OS, real-time scanning the user file-

system operations.

In contrast to the conventional personal antivirus where the protection is realized within

the user environment, here a virtual machine decouples the security functionalities of

the Windows system into a separate, invisible, and inaccessible system known as

security shell, where the antivirus components are moved. The on-access antivirus

operates from below the virtual disk, supported by a special driver installed into the

VMM that deploys information regarding file-system operations. This software

component intercepts each file-system access and builds a logical representation of the

file’s structure, in order to scan its content. In fact, with the reading of a file, from an

application or a system service, the file’s data blocks are examined by the security shell.

Encapsulating the on-access scan in this hidden, hardened layer, a constant protection

against viruses and malware is established, because the security functions cannot be

manipulated by unauthorized and evil users. “Untrusted” removable devices as UBS-

 40

stick and standard floppy disks, internet download and temporary/cached files are

systematically scanned as they are accessed.

Figure 9 - On-access scan - idea

From the view of the security shell, the user system appears as an image file of the

virtual machine, merely as an unstructured list of data blocks. The antivirus component

interprets this amount of unorganized data and develops a high-level logical

representation in the context of the security shell. Instead, conventional file-systems

translate the file representation, known by applications, into low-level information

directly applicable to the disk. In fact, a file is a logical description for a set of data,

physically stored as spare blocks on the hard disk and grouped together as linked list of

blocks (in the following referred to as file structure).

The on-access scan acts oppositely of how a standard file-system works. The Windows

file-system initially resolves each file operation (reading and writing) into low-level

 41

information about the sector’s position and the block’s size (in sectors). Then the

antivirus driver of the virtual machine intercepts this physical disk access, in terms of a

single data block, and reverse-resolves it. Since an evil pattern could be positioned

anywhere in a file, a virus is perceivable only if the whole content is analyzed, that is,

all the file’s data blocks should be scanned. For this reason, when an I/O operation

occurs, the interpreter reverse-resolves these blocks into the file, which they belong to,

and builds the whole list of blocks.

Briefly, the algorithm has been designed according to this model: when a file is read, its

physical structure is built and cached as a linked list of blocks. The next time the same

file is accessed, if it has not been moved or deleted, the previous cached structure is

ready to be used. The antivirus engine retrieves the needed sector information from the

cache, addresses the file’s data from the virtual disk, and processes it.

When a file is opened in writing mode, its structure is built similarly and compared with

the cache’s content. With each writing of the Windows system, the cached structures

must be modified likewise or entirely replaced to avoid synchronization problems.

 42

Figure 10 - On-access scan – global architecture

The challenge is synchronization and performance: different caching strategies affect

considerably the antivirus’ reliability and speed. Since the on-access scan is an “on-line

component”, it can generate inconsistent states when the image’s content is modified.

An infected file shall not be deleted, but replaced with a NULL content and a “read-

error” shall be returned to the user system. That file can be safely removed only off-line.

Moreover, if the files’ structures are not correctly updated into cache, infinite loops can

easily turn up, slowing down the Windows execution.

The performance is improved designing an optimized antivirus cache for handling file

structures. A self-balancing BST is adopted for its capacity to reorganize the cache’s

information, to be quickly addressable. Standard operations are much faster then

conventional trees, when handling non-random data. In fact, in real-world scenarios as

file-system caches sectors are accessed often sequentially and repeatedly.

 43

The caching algorithm speeds up of about two times the on-access scan, by marking

newly written and freshly modified files with a dirty flag. When a new file is created, or

at least a single file’s block is modified (added or deleted), the file gets marked and

considered dirty by the antivirus. When the same file is read afterwards, two alternatives

occur: if it has been marked the antivirus scans it, otherwise it is simply skipped. This

simple and sharp approach increases the time performance without losing the antivirus

efficiency.

The algorithm

Here a simplified version of the on-access algorithm is briefly presented through two

block diagrams, showing respectively what happens when a read and write is generated

by the user system for the virtual disk. In practise, the real implementation uses a

slightly more complex algorithm, due to the NTFS architecture, still now partially

obfuscated; windows file-system is closed code and sparsely documented. Moreover,

the difficulty of debugging strange file-system behaviours entails obvious slowdowns in

code implementation. For example, efficient caching solutions are ruined when an

unknown write occurs in the file index table (or MFT1).

In both read and write operations, the antivirus interrupts the user-system execution and

“reverse-resolves” the accessed block into its correspondent file and block list.

1 Reference to next paragraph for a file-system overview, focuses on Windows NTFS file-system.

 44

At reading time, the cache is looked against the current read. If the answer is positive,

the file structure is returned and the dirty flag verified. When the file has not been

altered in the meantime, the system execution continues; otherwise, the file’s content is

accessed and scanned.

If a virus is found, the user is informed with an alarm. The file could also be considered

damaged and marked for a future deletion. What is done is to replace file’s content with

NULL content and return a “read error code” to the NTFS file-system. To prevent a

situation of inconsistency and a guaranteed crash, that file must be deleted only offline;

the modification of the virtual image from the security shell, when the user operating

system is running, creates a synchronization problem between the Windows file-system

and the disk’s content. The well-known Windows’s “blue-screen” indicates the kernel

panic. After the virus scanning, the file’s dirty flag is cleaned.

When the entry is not cached, the block address is verified against the file index table.

This area (MTF) contains metadata information, as the file name, its access times,

permissions, and owner. If the address belongs to MFT, the block is simply read and

released to the application. To speed-up file access time, NTFS places file’s content

directly in the MFT, if less of 1500bytes. The challenge is to understand what particular

metadata has been accessed and decide if scan it, as should be done for file’s content.

On the other hand, when an ordinary file’s content is accessed, its structure is build and

cached with the dirty flag unmarked.

 45

The procedure terminates returning the data block or the error code, if a virus has been

found. The user-system execution resumes.

Read access to

single data block

Cache lookup

Check AV flag

Found

Scan data blocks

belonging to file
Dirty

Virus found?

Set flag to „clean“

Check for MFT

No

Clean

Read data block

No

Yes

Build file sector list

Add to cache

Set flag to „clean“

No

Mark file for

deletion

Overwrite file with

null contenent

Return read error

Yes

File sector list

returned

Set flag to „clean“

File repair feature

Figure 11 – On-access scan – read algorithm

 46

For writing operations, the algorithm is shorter: if the involved block is already cached,

file is considered modified and its dirty flag is marked; otherwise, the file structure is

build. For new file creations, the file structure is inserted in the cache as new element;

for modifications and deletions, the cache is upgraded with the new file’s block list. In

both case the file is marked as dirty.

 47

Figure 12 – On-access scan – write algorithm

 48

A challenge in cache design is time waste and memory usage: the cache should be at the

same time fast and requiring low memory for the file’s structure representation.

The cache is queried each time a block is read and written, looking up if the current file

is already present and extracting the file’s structure for the antivirus engine. Data blocks

have been therefore organized in a self-balancing Binary Search Tree (AVL), using the

first sector of each data block as internal index. Self-balancing structures are considered

faster compared with normal trees for being able to keep a low tree height. Furthermore,

AVL subtype is faster in standard operations when dealing with no uniform statistics,

like when data sets are not random, as sequential or repetitive ones.

To avoid useless memory consumption, the caching algorithm should be optimized.

When a file gets modified, enlarged with new content, the antivirus driver intercepts the

novel blocks and inserts them in the correct position inside cached file structure. It does

not rebuild a new file’s block list, adding it as double copy to the cache. In similar

manner, when a portion of file is deleted, the cache is upgraded with the shorted file

structure, or is completely erased when the file is not present anymore in file-system.

5.1. File organization

The smallest unit of space on a disk that any software can access is the sector, which

normally contains 512 bytes. It is possible to have an allocation system for the disk

where each file is assigned as many individual sectors as it needs (e.g., a 1MB file

would require approximately 2048 individual sectors to store its data). However, for

several performance reasons, in NTFS and other most file-systems, individual sectors

are not used. It can get cumbersome to manage the disk when files are broken into 512-

 49

byte individual pieces (e.g., a 20GB disk volume would contain over 40 million

sectors). To keep track of these many pieces of information is resource consuming and

disk’s fragmentation1 is much more of a problem.

Instead, the usual solution is to group sectors into larger blocks that are called blocks, or

clusters. The block size is determined primarily by the size of the disk volume: larger

volumes use larger cluster sizes. This dimension has an important impact on the system

performance and the disk utilization: larger cluster sizes result in more wasted space

because files are less likely to fill up an integral number of clusters.

Each file is stored as a linked list of blocks (file sector chain) and its data content can be

located anywhere on the disk. The file-system’s main task is to keep track of which

blocks are assigned to each file, providing its entire content to the operating system (and

hence to any software applications). The file’s information is recorded and managed

through a sort of index2 that is usually located at the begin of the partition. Every cluster

is chained to the next one using a number and it is not necessary to store the whole file

1 Hard disk fragmentation is the degree to which each file is spread around the disk. In the ideal case,

every file would in fact be contiguous: each cluster it uses would be located one after the other on the

disk. File-system starts out with all or most of its file contiguous, and becomes more and more

fragmented as a result of the creation and deletion of files over a period of time. Utilities Have been

developed that can optimize the disk by rearranging the files so that they are contiguous (this process is

called defragmentation).

2 In most file-systems, a file allocation table is used to keep track of which clusters are assigned to each

file. The operating system determines where a file's data is located by using the directory entry for the file

and the file allocation table entries.

 50

in a single continuous block. In fact, the file’s blocks can be located anywhere on the

disk, and can even be moved after the file creation. The operating system automatically

“follows” these file sector chains so that to the user each file appears to be in one

continuous chunk of disk space.

In the NTFS file-system, every structure is virtually a file, including the structures used

to maintain the volume’s content and the partition itself. This control information is

stored in a special metadata file and is initialized when the partition is firstly created. It

includes items such as the lists of files on the partition, the volume information, and the

cluster allocations. The Master File Table (MFT) is actually one of these metadata files,

but in some cases, it also contains descriptions of the other metadata files. The MFT

contains a record describing every file and directory in the NTFS volume. If a file is

small enough, its actual content may be stored in the MFT too. Since the metadata files

are just "files" to NTFS, they too have records in the MFT. In fact, the first 16 records

of the MFT are reserved for metadata files, as it is shown in the next table:

System file File Name MFT

Record
Purpose of the File

Master file
table

$Mft 0 It contains one base file record for each file and
folder on an NTFS volume. If the allocation
information for a file or folder is too large to fit
within a single record, other file records are
allocated as well.

Master file
table mirror

$MftMirr 1 Guarantees access to the MFT in case of a
single-sector failure. It is a duplicate image of
the first four records of the MFT

Log file $LogFile 2 Contains information used by NTFS for faster
recoverability. The log file is used by
Windows Server 2003 to restore metadata
consistency to NTFS after a system failure.

 51

The size of the log file depends on the size of
the volume, but you can increase the size of
the log file by using the Chkdsk command

Volume $Volume 3 It contains information about the volume, such
as the volume label and the volume version

Attribute
definitions

$AttrDef 4 Lists attribute names, numbers, and
descriptions

Root file
name index

. 5 The “root” folder

Cluster
bitmap

$Bitmap 6 It represents the volume by showing free and
unused clusters

Boot sector $Boot 7 It includes the BPB used to mount the volume
and additional bootstrap loader code used if
the volume is bootable

Bad cluster
file

$BadClus 8 It contains bad clusters for a volume.

Security
file

$Secure 9 It contains unique security descriptors for all
files within a volume

Upcase
table

$Upcase 10 Converts lowercase characters to matching
Unicode uppercase characters

NTFS
extension

file

$Extend 11 Used for various optional extensions such as
quotas, reparse point data, and object
identifiers

 12–15 They are reserved for future use
Table 1 - Metadata files ftored in the MFT

The elegance of the metadata system is that by storing internal information in files, it is

possible to expand on the capabilities of the file-system. In addition, these files do not

need to be stored in a specific location on the disk, so if a specific area becomes

damaged, they can be moved.

The following example helps to understand how a file is organized on disk. The DOS-

interpreter cmd.exe is distributed on the disk volume in four pieces (blocks for

simplicity) in ranges:

- from sector 200 to 220 (20 sectors);

 52

- from sector 500 to 800 (300 sectors);

- from sector 1000 to 1100 (100 sectors);

- from sector 11000 to 11650 (650 sectors)

Figure 13 – File organization on disk

The file is therefore 1170-sectors large and occupies 858KB (assuming a sector size of

512 bytes).

A file is represented within the antivirus cache in the same way as it is physical

organized. The file sector chain is implemented as a linked-list and contains three

pieces of information: the file’s name, the file’s number of blocks and a special flag by

the antivirus engine to scan the appropriate files. Each list’s node holds the first and the

last sector of each block.

Using the example, the cmd.exe interpreter is represented as a sector_list, in which the

filename is cmd.exe and the dirty_flag is 0 (assuming that the file has been just be

scanned). The list contains four sector_list_entry nodes that are initialized with the

addresses of the file’s blocks. In particular, because of the fragmentation problem, the

cmd.exe could be physically written as an unordered sequence.

 53

So, when a new list is allocated for the DOS-interpreter, its elements are attached to the

list in the same order in which the file’s blocks are physically stored on the volume. In

the same way, when a file becomes larger (smaller), the new blocks are inserted

(deleted) into the list in the correct order. It is very important to manage the order

correctly in order to prevent that the file’s content becomes garbage (the two sentences

“these files contain the virus don’t” and “these file don’t contain the virus” differs only

for the position of the “don’t” word, but have two opposite meanings!).

Figure 14 - On-access scan - file architecture
1

1 The file’s blocks has been written with this order: 1) block 1000:1100; 2) block 200:220; 3) block

500:800 and 4) block 11000:11650

 54

5.2. Cache design

Two efficient and common data structures are used to represent data in memory: hash

tables and self-balancing binary search trees.

Hash tables, sometimes also known as associative arrays, or scatter tables, are data

structures that offer fast lookup, insertion, and deletion of (key, value) pairs. In a well-

designed implementation of hash tables, all of these operations have a time complexity

of O(1), rather than the O(n) that linked lists, association lists, and vectors would

require for some of them.

Hashing was proposed and first studied and implemented on computers in the early

1950s, and is based on a simple idea: transform the key to a number (the hash process),

and then use that number to index a table. In order to keep the table size manageable,

reduce the computed number modulo the table size.

Notice, however, that hash functions do not preserve key order: even if keys are entered

in, say, alphabetical order, they will in general be stored randomly in the table. Thus,

the extra work of a sorting step may be needed, if key order is to be restored when the

table is traversed. Moreover, the hash function itself is time-consuming.

When the keys of more than one item map to the same position, we have a called a

collision. Collision handling is the price to be paid for the bonus of O(1) complexity,

and if the mechanism for doing so is poorly designed, performance may well deteriorate

to O(n), or worse. There are many collision resolution schemes, but they may be divided

into open addressing, chaining (shown in figure), and keeping one special overflow

area. Perfect hashing avoids collisions, but may be time-consuming to create.

 55

Figure 15 - Hash table showing collision problem

A Tree is defined as a not empty finite set of labelled nodes such that there is only one

node called the root of the tree, and the remaining nodes are partitioned into sub-trees. If

the tree is either empty or each of its nodes has not more than two sub-trees, it is called

a Binary Tree. Hence, each node in a binary tree has either no children, one left child,

one right child, or a left child and a right child, each child being the root of a binary tree

called a sub-tree.

Every node (object) in a binary tree contains two pieces of information. The first one is

proper to the structure of the tree, that is, it contains a key field (the part of information

used to order the elements), a parent field, a left child field, and a right child field. The

second part is the object data itself that can reside inside the tree or outside, referenced

by the node. The root node of the tree has its parent field set to null. Whenever a node

does not have a right child or a left child, then the corresponding field is set to null.

Trees support a set of basic operations, common to any family of trees:

 56

- searching for an item (lookup);

- adding a new item at a certain position on the tree (insertion);

- enumerating all the items (enumeration);

- deleting an item (deletion);

- removing a whole section of a tree (pruning);

- adding a whole section to a tree (grafting);

- finding the root for any node.

A Binary Search Tree (BST) is a binary tree with more constraints. If x is a node with

key value key[x] and it is not the root of the tree, then the node can have a left child

(denoted by left[x]), a right child (right[x]) and a parent (p[x]). A BSD is a tree with the

following Binary Search Tree property:

 1. All nodes y in left sub-tree of x have key[y] < key[x]

 2. All nodes y in right sub-tree of x have key[y] > key[x]

The major advantage of binary search trees is that the related sorting algorithms and

search algorithms such as in-order traversal can be very efficient.

The basic operations on a binary search tree of n nodes (lookup, insertion, removal and

sort) take time proportional to the height of the tree, ranging from n in the worse case,

when the unbalanced tree resembles a linked list, to log(n) in the average case, when a

complete balanced BST occurs.

 57

Figure 16 - Tree degrading to linked list

Self-Balancing Binary Search Trees

For this reason, self-balancing BST have been studied and proposed as a solution to

keep tree height, or the number of levels of nodes beneath the root, as small as possible

at all times, automatically. The height must always be at least the ceiling of log n, since

there are at most 2k nodes on the kth level; a complete or full binary tree has exactly this

many levels. Self-balancing BS Trees are one of the most efficient ways of

implementing associative arrays, sets, and other data structures.

Ordinary binary search trees have the primary disadvantage that they can attain very

large heights in rather ordinary situations, such as when the keys are inserted in order.

Self-balancing binary trees solve this problem by performing transformations on the tree

(such as tree rotations) at key times, in order to reduce the height. Although a certain

overhead is involved, it is justified in long runs where the time of later operations

drastically decreases.

The following figures show the same tree, firstly un-balanced and later after a balancing

algorithm has been applied; although the tree is the same, operations taken on the

balanced one require less time.

 58

Figure 17 - Example of un-balanced BST

Figure 18 – The same tree after balancing

Reducing the tree height, using the balancing techniques implemented in the self-

balancing trees, the computational complexity gets reduced of a n/log(n) factor in its

basic operations.

 59

BST

operation

Completely unbalanced

 (linked list)

Balanced

(Self-balancing BST)

Height n log b

Lookup O(n) O(log n)

Insertion O(n) O(log n)

Removal O(n) O(log n)

Sort O(n) O(n log n)

Enumeration (In-order

iteration)

O(n) O(n)

Table 2 - Computational complexity of BST operations

Hundreds of self-balancing BST have been proposed to keep automatically tree height

near log(n). Some well-known implementations are AVL, Red-black and Splay trees.

In AVL-tree, each node has a balanced factor set to the difference of height of its right

and left sub-trees. A node with balance factor 1, 0, or -1 is considered balanced. A node

with any other balance factor is considered unbalanced (marked as “illegal”) and

requires rebalancing the tree, by sequenced rotations. Let X be the deepest node whose

balance factor has become "illegal". In this scenario X's balance factor has become too

large, +2 (the scenario that X's balance factor has become too small, -2, can be handled

in a symmetric manner.) This illegal imbalance happened because X previously had a

balance factor of +1, and the insertion caused X's right sub-tree (headed by Y) to

increase in height. This height increase implies that Y had a balance factor of 0,

 60

because otherwise either Y would not gain height or Y would become illegally

imbalanced. This scenario deploys in 2 cases: the insertion is made into Y's right sub-

tree or into Y's left sub-tree. Insertion into Y's right sub-tree requires a single rotation to

rebalance the tree:

 y rotate (xy) R x

 / \ ====> / \

 x 3 1 y

 / \ rotate (xy) L / \

 1 2 <==== 2 3

On the other hand, when the insertion is done into Y's left sub-tree, a double rotation is

done:

 DOUBLE ROTATE (xyz) L

 x 1. rotate (yz) R

 \ 2. rotate (xz) L z

 y =======> / \

 / x y

 z DOUBLE ROTATE (xzy) R

 1. rotate (xz) R

 2. rotate (yz) L

 <=======

Sleator and Tarjan suggested the Splay-tree as an efficient alternative implementation of

self-balancing BST that takes advantage of locality in the incoming lookup requests to

increase data lookup. Locality in this context is a tendency to look for the same element

multiple times. A stream of requests exhibits no locality if every element is equally

likely to be accessed at each point (uniform access). For many applications, there is

locality, and elements tend to be accessed repeatedly. This is truer for caches, where

groups of data are accessed more frequently than the rest.

 61

Whenever an element is looked up in the tree, the splay tree reorganizes to move that

element to the root of the tree, without breaking the binary search tree invariant. If the

next lookup request is for the same element, it can be returned immediately. In general,

if a small number of elements are being heavily used, they will tend to be found near the

top of the tree and are thus found quickly.

A splay tree has no explicit balance condition and a special operation (“splay”) is done

after each search or insertion operation. Splaying at node x causes node x to become

the root of the binary search tree through a specific series of rotations as follows. Three

cases occur:

 1. X has no grandparent (zig)

 * If X is left child of root Y, then rotate (XY)R.

 * Else if X is right child of root Y, then rotate (YX)L.

 2. X is LL or RR grandchild (zig-zig)

 * If X is left child of Y, and Y is left child of Z,

 then rotate at grandfather (YZ)R and then rotate at father (XY)R.

 * Else if X is right child of Y, and Y is right child of Z,

 then rotate at grandfather (YZ)L and then rotate at father (XY)L.

 If X has not become the root, then continue splaying at X.

 3. X is LR or RL grandchild (zig-zag)

 * If X is right child of Y, and Y is left child of Z,

 then rotate at father (YX)L and then rotate at grandfather (XZ)R.

 * Else if X is left child of Y, and Y is right child of Z,

 then rotate at father (YX)R and then rotate at grandfather (XZ)L.

 62

 If X has not become the root, then continue splaying at X.

Performance analysis

Choosing the right kind of tree affect the performance significantly. For this reason, Ben

Pfaff has done an empirical study of the relationship between the algorithms used to

manage BST-based data structures and performance characteristics in real systems. He

compared four variants of the BST’s data structure: unbalanced-, AVL-, Red-black-,

and Splay- trees. For each BST data structure variant, he compared five different node

representations: plain, with parent pointers, threaded, right-threaded, and with an in-

order linked list.

At the end, he ran three experiments in real-world scenarios and one in random data-set

scenario on 20 BST variants. The next table shows results of running a Virtual Memory

Area activity (mmap() and munmap() calls) during the execution of three programs and

one simulated.

The results of the “Squid” test are the most relevance for the design of the antivirus

cache, because of the many similarities between the caching of web pages and disk

sectors.

 63

Test

Node

represent. Time (seconds)

Performance improvement

 against BST

 BST AVL RB SPLAY AVL RB SPLAY

Mozilla Plain 4.49 4.81 5.32 2.71 -7.12% -18.48% 39.64%

 Parents 15.67 3.65 3.78 2.63 76.70% 75.87% 83.21%

 Threads 16.77 3.93 3.95 2.67 76.56% 76.44% 84.07%

 R. threads 16.91 4.07 4.20 2.68 75.93% 75.16% 84.15%

 Linked list 16.31 3.64 4.35 2.74 77.68% 73.32% 83.20%

Vmware Plain 208.00 8.72 10.59 3.77 95.80% 94.90% 98.18%

 Parents 447.40 6.31 7.32 3.62 98.59% 98.36% 99.19%

 Threads 445.80 6.91 8.51 3.64 98.45% 98.09% 99.18%

 R. threads 446.40 6.88 8.59 3.51 98.45% 98.07% 99.21%

 Linked list 472.00 7.35 8.60 3.45 98.44% 98.17% 99.26%

Squid Plain 7.34 4.41 4.67 2.84 39.91% 36.37% 61.30%

 Parents 12.52 3.69 3.80 2.64 70.52% 69.64% 78.91%

 Threads 13.44 3.92 4.18 2.70 70.83% 68.89% 79.91%

 R. threads 14.46 4.17 4.27 2.86 71.16% 70.47% 80.22%

 Linked list 13.13 4.02 4.19 2.65 69.38% 68.08% 79.81%

Random Plain 2.83 2.81 2.86 3.43 0.70% -1.06% -21.20%

 Parents 1.63 1.67 1.64 1.94 -2.45% -0.61% -19.01%

 Threads 1.64 1.74 1.68 2.02 -6.09% -2.43% -23.17%

 R. threads 1.92 1.96 1.93 2.22 -2.08% -0.52% -15.62%

 Linked list 1.46 1.54 1.51 1.74 -5.47% -3.42% -19.17%

Table 3 - BST evaluation

For the random data set, unbalanced BSTs are best because they do not insert extra

work due to tree rebalancing1. There is no need for complex rebalancing algorithms,

because ordinary BSTs produce acceptably balanced trees with high likelihood. Thus,

for random insertions, data structures with the least extra overhead (above ordinary

BSTs) yield the best performance.

1 For the random data set, ordinary BSTs make no rotations, red-black trees make 209, AVL trees make

267, and splay trees make 2,678

 64

The red-black balancing rule is more permissive than the AVL balancing rule, resulting

in less superfluous rebalancing, so red-black trees perform better for random insertions.

Splay trees consistently performed worst, and required the most comparisons, within

each node representation category in the random test. This reflects the work required to

splay each node accessed to the root of the tree, in the expectation that it would soon be

accessed again. This effort is wasted for the random set because of its lack of locality.

On the other hand, when data are not uniformly accessed, ordinary BSTs become much

slower than self-balancing trees. This condition of not randomness is usually respected

for real-world scenarios, where data are inserted and accessed sequentially and

repeatedly. If data are sequentially inserted into the cache, unbalanced BSTs generate a

tree shaped as linked list, degrading completely tree performance. As previously

discussed, in this situation node operations on ordinary BSTs reach a complexity O(n),

while self-balancing BSTs as AVL and splay-trees, to the capacity of reorganizing the

tree, reduce time to O(log(n)).

Looking at the Squid scenario, both AVL and splay trees beat unbalanced BSTs by a

wide margin, ranging from 40% of AVL with plain node-representation to 80% of splay

tree when right threads node representation is used. In particular, splay trees are better,

due to splay tree’s ability to keep frequently used node near the top of the tree.

 65

BSTs comparation

plain

parents

threads

right threads

linked list

p
la

in

p
a

re
n

ts

th
re

a
d

s

ri
g

h
t

th
re

a
d

s

li
n

k
e
d

 l
is

t

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

node representation

ti
m

e
 (

s
e

c
o

n
d

s
)

BST

AVL

RB

SPLAY

Figure 19 – BST evaluation - squid scenario

 66

Conclusions

In a real-world scenario as in a file-system cache, sectors are accessed mostly

sequentially and often repeatedly. Unbalanced BSTs have been demonstrated to be too

slowly for practical applications, and more sophisticated self-balancing tree has been

proposed in order to reduce computation complexity and improve the global

performances (40-80%). Both AVL and splay trees represents valid solutions: first ones

for ability to rebalance tree only when necessary, reducing “extra work” times when

operating with random data set; second ones for offering frequently used nodes fastest.

The antivirus cache is designed as AVL-tree, where the leaf reference data-blocks of the

virtual disk. Each addressed block is represented as an object linked by the leaf and a

cached file consists of a set of leaf. As already discussed one block is a sequence of

continuous sectors, delimited in a range by the first and the last sector.

The entire tree is indexed using the first sector of each cluster. When a new data block

has to be added to the cache, a new leaf is created to reference the cluster and the

correct position is looked up using the block’s first sector. Later on, possible tree

reorganization could occur.

In details, each leaf references one sector_cache_data element that belongs to a

sector_list list, used to index blocks belonging to the same file. In this way, when a file

has to be accessed, its blocks are addressed using the sector_list list and not querying

the tree for each single cluster. This mechanism improves at the same time cache

performance and efficiency.

 67

Figure 20 - On-access scan – cache architecture

 68

5.3. Antivirus integration

The libclamAV open source library (version 0.88) has been adapted and reused in the

test implementation, integrated as antivirus engine for providing virus scan facilities.

The library has been slightly modified, to be able to operate with the antivirus cache;

antivirus engines are suitable for file scanning, while secureOS antivirus should work at

lower level, directly on hard disk sector and block data structures. The goal has been to

create a generic antivirus interface, making the antivirus layer extremely portable and

reusable in different implementations; in fact just few “lines of code” of the library have

been modified, while much of the code has been included into the secureOS service.

Technically, the routine for virus-scanning a file has been hacked to handle data coming

from a list of sectors instead of a file descriptor (once opened, a file is read iteratively as

a sequential set of data).

Here is the hack of the matcher.c source file1:

< int cli_scandesc (int desc,

< const char **virname,

< unsigned long int *scanned,

< const struct cl_node *root,

< short otfrec, unsigned short ftype)

[…]

< while ((bytes = cli_readn(desc, buff, SCANBUFF)) > 0)

> int _td_scanlist (struct sector_list *pSectorList, int BDRVfd,

> const char **virname,

> unsigned long int *scanned,

> const struct cl_node *root,

> short otfrec, unsigned short ftype)

>

> int desc = -1; // private descriptor set to dummy value of 1

[…]

> while ((bytes = _td_readn(pSectorList, BDRVfd,

 buff, SCANBUFF)) > 0)

1 Red/minor (<) is original code and blue/major (>) is new code

 69

The _td_readn() function1 is responsible for parsing the file sector chain (sectors

belonging to the file to scan) in sequential fixed-size data sets, reading at each iteration

the file’s content from the virtual disk. This routine works similarly to the libc’s

read(), where an internal mark is moved forward at each function call, labelling the

next “element” to be read.

The algorithm is particularly interesting and here is presented as pseudo-code 2:

while (still to read > 0 AND number of sectors != 0)

 {

 current byte = element.first_sector * 512;

 number of sector to read = (element.last_sector –

 element.first_sector) * 512;

// seek to the current position

 lseek (device, current byte + offset, SEEK_SET);

 if (number of sectors - offset > still to read)

// the current element is bigger of the read one

 {

 ret = read (device, buffer + already read, still to read);

// update the indexes

 still to read -= ret;

 already read += ret;

 offset + = ret;

 }

// the left sectors of the i-element are not enough

 else

 {

 ret = read (device, buff + already read,

 number of sectors – offset);

1 Please see Appendix A for the entire_td_readn() source code.

2 Appendix A contains the C implementation.

 70

// update the indexes

 still to read -= ret;

 already read += ret;

// set the status pointer to next element

 i++;

// go to the next element

 pStatus.element++;

 pStatus.offset = 0;

 }

}

Moreover, this function calculates each file size and discards those bigger than

10MByte (20.000 sectors). This trade-off between performance and security has been

temporarily used in the research environment.

When the antivirus service starts, the td_init_avscan() routine1 load the Clamavis

engine the virus pattern database.

The td_avscan() function is the real interface to the antivirus engine. In agreement with

the on-access scan algorithm, when reading on a dirty file has been intercepted, the

file’s whole content is virus-scanned; the antivirus interface is queried with the file

sector chain and the scan results, together with a possible virus name, are returned:

int td_avscan (struct sector_list *pSectorList, int BDRVfd,

 char **virname)

As it can be seen, this antivirus interface is very generic, to be high reusable and

portable on different antivirus engines.

1 Please see Appendix A for td_init_avscan() source code.

 71

5.4. Testing

Testing represents the last phase of on-access scan research, proving that this antivirus

agent, implemented into the test prototype, works. Future commercial applications, as

all-in-one security solutions, can be developed. Testing shows that the on-access

component correctly intercepts the reading and writing operations of virtual disk’s

sectors, builds file sector chains from single sector accesses and keeps its internal cache

synchronized with Windows system. The on-access algorithm is right enforced into the

agent, which keeps a footprint on which files has been lately created and modified. This

permits to virus-scan just critical file-system resources, realizing a performance

improved solution in terms of time overhead of the antivirus service.

Here it is given the evidence of the obtained results.

Low-level I/O activities are wrapped by the modified version of the VMM for antivirus

agent. Each Windows file-system operation to the virtual disk image is captured as

block reading or writing. Blocks are usually determined by a size of 2, 8, and 16 sectors:

hda: read() ; [3191953 - 3191968] ; (16 sectors)

hda: read() ; [3192072 - 3192087] ; (16 sectors)

hda: write() ; [2108207 - 2108214] ; (8 sectors)

hda: read() ; [3192088 - 3192089] ; (2 sectors)

Hda: read() ; [3273873 - 3273880] ; (8 sectors)

hda: write() ; [2108367 - 2108374] ; (8 sectors)

hda: write() ; [2112623 - 2112638] ; (16 sectors)

 72

Windows NTFS (version 3.1) has been counted as “de facto standard” for the user

system’s file-system and the development process has been supported through NTFS

Linux driver, distributed in the Linux-NTFS toolkit. Therefore, current prototype tested

here assumes an NTFS file-system and does not work with FAT.

When a sector is written, the agent identifies the file owning that sector. If a cache miss

occurs, the antivirus builds a new file sector chain to add into the cache; otherwise, it

upgrades the cache’s content with the current status of the disk. In the same way, at read

access, cache is scanned for the list of blocks for that operation.

In both use cases, the agent has given evidence of being able, given an individual sector,

to build the whole list of blocks forming that file and to lookup for the file name.

For example, the catsrvut.dll library has been “resolved” into a list of five blocks, while

the change.log log seems of bigger size.

*** sector_cache_add_sector_list ***

Adding catsrvut.dll, m_sector_list_size = 5

 #0: 1264592 to 1264663

 #1: 774992 to 775295

 #2: 394224 to 394535

 #3: 710000 to 710327

 #4: 1205040 to 1205255

*** sector_cache_add_sector_list ***

Adding change.log, m_sector_list_size = 15

 #0: 909872 to 909903

 #1: 1483592 to 1483687

 73

 #2: 2966360 to 2966391

 #3: 150960 to 150991

 #4: 2752456 to 2752487

 #5: 107448 to 107479

 #6: 723448 to 723479

 #7: 896272 to 896303

 #8: 71336 to 71367

 #9: 91856 to 91887

 #10: 123680 to 123711

 #11: 989600 to 989631

 #12: 985600 to 985631

 #13: 895632 to 895663

 #14: 1474056 to 1474087

The caching mechanism works pretty well, in both reading and writing.

When Windows starts, the agent shows a read access of the volume boot sector, indexes

as sector 0 in the file-system and named $Boot (a dollar is set above metadata files); the

access is predictable, since boot sector contains the bootstrapping code used to run

Windows. When accessed, $Boot is cached and the dirty flag is cleaned; later on, it is

simply shipped:

hda: read() ; [0 - 0] (1 sectors)

rM: $Boot – flag set to CLEAN

hda: read() ; [0 - 0] (1 sectors)

rH: $Boot

The same behaviour has been noticed for the plug&play driver archive (driver.cab):

 74

hda: read() ; [63 - 63] (1 sectors)

rM: driver.cab – flag set to CLEAN

hda: read() ; [63 - 63] (1 sectors)

rH: driver.cab

When a write occurs, a comparable procedure is run; anyway, now the file is considered

as dirty:

hda: write() ; [65593 - 65593] (1 sectors)

wM: change.log

ntfs_reverse_lookup_and_add_to_cache() - dirty flag set on

hda: write() ; [65593 - 65593] (1 sectors)

wH: change.log

write() - dirty flag set on change.log

The antivirus engine seems to work quite well, being activated when a read occurs on a

cached file that appears new or modified (dirty flag set).

This first log shows two skipped files, a third one scanned and the last one reported

infected:

1. raw_read() - cache hit

file ipxwan.dll has clean flag - scan not required

raw_read() - cache hit

file SiteGeneric.css has clean flag - scan not required

 75

2. raw_read() – cache hit

file wdma_rip.PNF has dirty flag

going to scan it

File clean

flag reset to CLEAN

raw_read() – cache hit

file test2.txt has dirty flag

going to scan it

VIRUS FOUND: Eicar-Test-Signature

flag reset to CLEAN

This second log is higher-level and reports which files are scanned. It’s interesting to

note that both plug&play driver archive and the swap file are skipped because they are

bugger than 10Mbyte. The “Eicar-Test-Signature” is recognized in the text2.txt

document.

* skipping driver.cab (76 MB)

td_avscan(): ntldr - virus not found

td_avscan(): CollectedData_15.xml - virus not found

td_avscan(): GTL_SiteGeneric[1].css - virus not found

* skipping pagefile.sys (3422 MB)

td_avscan(): noise.chs - virus not found

td_avscan(): noise.cht - virus not found

td_avscan(): comexp.chm - virus not found

* td_avscan(): test2.txt - VIRUS FOUND: Eicar-Test-Signature

 76

Finally a hued screenshot, displaying Windows XP “on the top” of the security shell,

proves that the on-access antivirus works! As soon as the EICAR-test file has been

opened within user environment, the agent console reports the VIRUS FOUND error,

along with virus filename. The two real-time logs print each virus-scanned file and the

caching activity.

Figure 21 - On-access scan – screen-shoot: virus found

 77

6. Network scan

Network scan deals with the problem of scanning TCP/IP data incoming and outgoing

the user system for known viruses and malware. At run-time, the scan engine identifies

and deletes threats spreading over “untrusted” networks before reaching and infecting

the user environment. At the same time, in case of infection, neither viruses nor

malware are able to propagate outside the secured computer: the antivirus analyzes any

data before they are transmitted to the physical interface. Cleaning the user’s connection

in both directions, the personal computer is protected from external threats and vice

versa the neighbourhood (e.g. the LAN) is secured from possible virus spreads.

To accomplish this goal, the following software architecture has been designed and

implemented. Virtualization provides the guest OS with a virtual Ethernet device, and

its associate network, known as VM-NET, used to communicate with external networks.

Therefore, the user system detects just one interface, using it for its network

connections, independently from the type or the number of physical devices. All

network connections established by Windows are carried out on this virtual network and

automatically routed by the secureOS, from the VM-NET to the appropriate physical

interface. This routing mechanism is encapsulated into the security shell, in order to be

completely hidden from user prospective.

Since all network connections related to the Windows system come over the virtual

network, it is quite easy to capture any data from the sub layer system. An AV stream

interceptor is installed in the secureOS, on the VM-NET segment connecting the virtual

 78

environment with the kernel routing service. Then, the captured data are analyzed by the

antivirus engine for viruses and malware.

USER SPACE

VM Environment

VM Net
AV Stream

Interceptor

Windows

KERNEL

SPACE

Routing Table

Interface 1

Interface 2

Interface 3

Interface n

AV

Engine

AV

Signature

Database

VM Net

TCP/IP

Stack
VMM

Figure 22 - Network scan - basic architecture

The great benefit of the proposed solution is the capacity of virus-scanning any TCP/IP

stream, independently from the physical interface and inconspicuously to the user and

Windows system.

Free Software solutions

Any antivirus can be used to implement the AV Engine and the Signature Database

components. Since Clamavis does not natively support network scanning, it should be

coupled with an external Interceptor component, which would capture the data packets

and would forward them to the antivirus core. Because of the Free Software license

adopted by ClamAV antivirus (GPL), at least three Free extensions are indexed on the

3rd party software page of the project1:

1 ClamAV 3rd party software, http://www.clamav.net/3rdparty.html

 79

− kclamav: light and streaming version of Clamavis, built as a Linux 2.6 kernel module

and hooked via the Netfilter API. The ClamAV virus database is loaded into kernel

memory. Kclamav still in PRE-ALPHA status (version 0.0.1, released in January

2006), and its installation is quite tricky: it requires Linux Kernel and Netfilter API

patching, and some rules of Iptables to be compiled;

− snort-ClamAV: Snort pre-processor that scans data in network packets for viruses.

Snort is a Free Software network intrusion prevention and detection system utilizing

a rule-driven language, which combines the benefits of signature, protocol and

anomaly based inspection methods.

− snort_inline ClamAV pre-processor: snort-inline1 is shipped with a ClamAV pre-

processor that scan network traffic for viruses. It can choose which protocols must be

monitored. When a virus is detected, snort-inline can send a reset and drop the

relative packets.

6.1. VPNs

A general issue in the antivirus research field is the scanning of encrypted

communication channels. VPNs2 are frequently used by companies to interconnect

1 From snort_inline homepage, http://snort-inline.sourceforge.net/: snort_inline is basically a modified

version of Snort that accepts packets from iptables, via libipq, instead of libpcap. It then uses new rule

types (drop, sdrop, reject) to tell iptables whether the packet should be dropped, rejected, modified, or

allowed to pass based on a snort rule set. We can think of this as an Intrusion Prevention System (IPS)

that uses existing Intrusion Detection System (IDS) signatures to make decisions on packets that traverse

snort_inline.

2 VPN is acronyms for Virtual Private Network.

 80

geographically distributed offices and departments, with a secure communication

channel over a publicly “untrusted” accessible network (normally theInternet). The

access to the company’s Intranet is usually permitted from outside only via VPN. VPNs

use cryptographic tunnelling protocols to provide the intended confidentiality, sender

authentication, and message integrity. Cryptography can be applied to the transport

layer1 or more securely to the bottom network layer2; in both cases the applicative

payload containing the data is completely encrypted.

VPN consequences on virus protection

VPNs build encrypted network channels to ensure the confidentiality of data and to

prevent malicious users from sniffing and stealing confidential information. However,

the encrypted nature of VPN-protocols prevents trusted applications to access

information transferred on VPN channels. This native limitation is reflected on the AV

stream interceptor previously described, which cannot scan VPNs established by the

Windows system. Viruses and malware could spread through the VPN channel from the

Internet to the user-system, and later on to every department connected via VPN.

1 OpenVPN encrypts at transport layer, http://openvpn.net/

2 IPSEC running in tunneling mode encrypt at network layer, http://www.ietf.org/rfc/rfc2401.txt

 81

USER SPACE

VM Environment

VM Net
AV Stream

Interceptor

Windows

KERNEL

SPACE

Routing Table

Interface 1

Interface 2

Interface 3

Interface n
AV

Engine

AV

Signature

Database

VM Net

TCP/IP

Stack

VMM

VPN
VPN

Figure 23 - VPN scan problem

An innovative approach has been suggested as a solution to the VPN virus scanning

issue, ensuring that all data transmitted on encrypted channels, independently from the

layer (transport or network) or the encryption algorithm used, get scanned for viruses

and malware.

The answer

The idea is rather simple: VPNs are established from the secureOS and their content is

extracted, virus scanned and bridged to Windows (and vice versa). The end user

manages the encrypted channels from a control panel (the User Control Center (UCC)),

where preconfigured VPNs are deployed by the security administrator from a central

site to each personal computer, as Network Connection Control1 policies (basically an

XML file containing the configuration). Normally the user cannot create new VPNs but

should consider using the preconfigured ones. The NCC module offers a visual interface

1 NCC as acronym of Network Connection Control

 82

to list preconfigured VPN, activate and shutdown single encrypted channels, show

information regarding the status.

When a VPN has been selected by the user, its configuration is sent to the appropriate

agent and an internal mechanism is run. The VPN agent makes use of a database to

establish encrypted tunnel and to bring the encrypted network channel up. This includes

information regarding available VPN drivers and a compatibility list of clients and

servers. In this way, the agent loads the appropriate driver and uses the client for the

VPN-server specified in the received configuration.

When the VPN is correctly established and it is operative into secureOS, the agent

configures the routing-table to bridge data extracted from VPNs to Windows, by the

virtual network.

As it can be seen in the figure, VPNs (red colour) terminate inside the secureOS; their

network data are “extracted” as plain text (blue colour) and forwarded through the

virtual network to the VM environment and to Windows. The antivirus is therefore able

to capture and virus-analyze VPN data (in blue), now running in plain text on the VM-

Net, just like of not-VPN traffic.

The bridging mechanism continues in both directions until the user closes voluntarily

the secure tunnel. At that point, VPNs established from the security shell are shutdown.

 83

Figure 24 – Network scan – architecture for VPNs

Scan of encrypted channels guarantees higher protection against viruses and malware,

especially when VPNs are the only communication channels allowed, either for the

single computer than its neighbourhood. A network infrastructure built entirely with

VPNs, could be compromised globally by viruses, spreading without control inside

encrypted channels.

Unfortunately, the described architecture has not been practically implemented because

of the lack of commercial Linux-compatible clients. Since many vendors supply only

Windows VPN clients and a strict point is portability, to be intended as migration from

an existing system, it becomes mandatory to maintain current VPN infrastructures and

establish Virtual Private Network within Windows. As already discussed, this

configuration prevents antivirus installed into secureOS to scan VPN data, with

negative security implications on the user environment.

 84

6.2. TLS/SSL and SSH protocols

In the previous chapter, the problem of scanning TCP/IP network streams encrypted at

Transport- or Network layers has been analysed, as it has been done in the Virtual

Private Networks. The idea of managing VPNs from the security shell, managing new

encrypted tunnels at user demand, enables antivirus to intercept any data for a real-time

virus scan, before being bridged to the user system.

However when a network stream is encrypted at application layer, the encryption is

directly established between applications and data cannot be accessed by the antivirus

of secureOS, that operate at lower layers. Viruses and malware spreading across these

communication channels cannot be intercepted by antivirus, because information is

encrypted.

This is the case of TLS/SSL and SSH protocols, used to access remote information is a

secure wavy, through application layer encryption. Both TSL/SSL and SSH are

distributed as suite of set of network protocols that allows establishing of secure

channels between two end-points, by the use of public-key cryptography features, and

providing end-points authentication and communications privacy. TLS for example

works involving three basic phases:

1. Peer negotiation for algorithm support

2. Public key encryption-based key exchange or certificate-based authentication

3. Symmetric cipher -based traffic encryption

 85

SSH is typically used to log into a remote machine and execute commands, but it also

supports tunnelling, forwarding arbitrary TCP ports and X11 connections; it can transfer

files using the associated SFTP or SCP protocols. From an evil prospective SSH

protocols suite could be adopted by an attacker to transfer evil code (as backdoors and

DoS worms) on the target machine, avoiding antivirus controls and run unauthorized

software. At the same time, SSH could be used to instantiate connections from the

target machine to outside world, avoiding possible content-filtering controls and

stealing sensible information from the company network.

Figure 25 – SSL layer design

Technically TLS/SSL runs on layers beneath application protocols such as HTTP, FTP,

SMTP, and NNTP, and it can add encryption security to any protocol that uses reliable

connections (such as TCP). However it’s most commonly adopted to implement

HTTPS, an extension to standard HTTP protocol, used to secure World Wide Web

pages for applications such as electronic commerce, in which sensitive information such

as credit-card numbers are transmitted over Internet. SSL is also used in conjunction

with mail protocols, like SMTP and POP3, to grant data confidentiality and personal

 86

privacy. When emails are sent (received), their content is directly encrypted at

application layer by the mail-client (server) and transmitted in a secure form over the

network.

At the same time, the advantages offered by the TLS/SSL protocol represent a limit to

antivirus efficiency, since web pages transmitted over HTTPS channels and emails

received and sent via POP3S and SMTPS cannot be scanned by the antivirus engine

installed in a security shell.

Nowadays a lot of viruses and malware spreads across World Wide Web using security

flaws discovered in common browsers, as Internet Explorer, and http servers, as

Microsoft IIS. Core-Red1 for example is a well-known worm that exploits a buffer

overflow in Microsoft IIS index-service library and installs itself on the victim target,

permitting execution of arbitrary code in the Local System security context. This level

of privilege effectively gives an attacker complete control of the victim system.

Moreover, in the earlier variant of the worm, victim hosts with a default language of

English experienced the following defacement on all pages requested from the server:

 HELLO! Welcome to http://www.worm.com! Hacked By Chinese!

In addition to possible web site defacement, infected systems may experience

performance degradation as a result of the scan activity of this worm. This degradation

can become quite severe since it is possible for a worm to infect a machine multiple

times simultaneously.

1 CERT Advisory n.2001-19 on Code Red worm:http://www.cert.org/advisories/CA-2001-19.html

 87

Malware propagates easily also as email attachment, taking advantage of security flaws

of email-clients or browser-shared libraries. This is the case of the Nimda1 worm, which

exploits the “Automatic Execution of Embedded MIME Types” vulnerability

discovered in Microsoft Internet Explorer 5.5 SP1, to propagate through email arriving

as MIME "multipart/alternative" and execute arbitrary commands on the victim host.

The impact of the Nimda worm is similar to the Core-Red one.

While a standard antivirus installation is not able to extract and scan data-streams

encrypted at application layer, the idea described here permits to run the antivirus

service also on connections encrypted at application layer, just for a restricted set of

applications, as SSL/TLS over HTTP (HTTPS) and SSH suite (STFP and SCP). Due to

the high number of malware spreading over Web through HTTP(s) protocols, it is of

primary importance to support HTTPS antivirus filtering.

The idea

In order to virus-scan Web pages served through HTTPS, the idea is to implement a sort

of transparent proxy agent that acts as Man-In-The-Middle (MITM) attacker. The agent

creates a couple of private/public key for each new HTTPS connection, and intercepts

TSL/SSL handshaking to realize a MITM attack. It decrypts HTTPS traffic and sends

1 CERT Advisory n.2001-26 on Nimda worm: http://www.cert.org/advisories/CA-2001-26.html

 88

Web content to the antivirus engine. If a virus is not found the Web request is re-

encrypted for the user browser, otherwise an alarm is raised.

The Man-In-The-Middle attack could be explained as “story” with three “actors”: Alice

as end-user (the victim), Bob as Web-server (www.server.com) and Mallory as attacker

(the transparent proxy www.attacker.org). Suppose Alice wishes to communicate with

Bob via HTTPS, and that Mallory wishes to eavesdrop on the conversation, or possibly

deliver a false message to Bob. To get started, Alice asks Bob for his public key. Bob

sends his public key to Alice, but Mallory intercepts it. Mallory simply sends Alice a

public key for which she has the private, matching, key. Alice, believing this public key

to be Bob's, then encrypts her message with Mallory's key and sends the encrypted

message back to Bob. Mallory again intercepts, decrypts the message, keeps a copy, and

re-encrypts it (after alteration if desired) using the public key Bob originally sent to

Alice. When Bob receives the newly encrypted message, he will believe it came from

Alice.

 89

Figure 26 - Man-In-The-Middle attacks against HTTPS

A PoC1 has been developed by Simon Newton to show MITM attack for HTTP over

TLS/SSL.

Since MITM is to be considered more as an attack technique than a SSL feature, it

should not to be considered a reliable solution, but more as a hack that permits to

intercept and scan Web encrypted pages with strong limitations, for a possible product

(and not for the research environment).

For example, MITM mechanism implemented in the proxy can’t work when digital

certificates are used. A certificate is a combination of public key and its digital

signature, made by an external authority (the Certification Authority) that grants key

1 Ssl_proxy PoC: http://www.nomis52.net/data/ssl_proxy.pl

 90

belong to an individual. In this occasion MITM attack is immediately detected by both

communication sides, blocking SSL authentication.

Two approaches can be applied to virus-scan SSH (and SFTP/SCP) network

connections, one which is exactly the same used for HTTPS and that consists on

implementing a sort of agent that acts as hidden proxy running MITM attacks, the other

similar to idea presented for VPN scan. The second one in particular makes use of the

SSH embedded proxy capabilities that permit to instantiate a fictitious session from the

secureOS to target, and bridge content data to the user-system as plain-text (interposing

the antivirus interceptor to capture and send the network stream to analyze to the

antivirus).

 91

6.3. Removable network devices

In last couple of years, removable network devices as LAN, WLAN and UMTS have

become more widespread in IT market, distributed either in PCMCIA and USB format.

Each computer is equipped with at least two USB ports and PCMCIA slots (for

laptops). Almost any operating system, as Windows XP, Linux and MacOS, support hot-

plug interfaces and numerous devices, as printers, scanners, cameras and mass-storage,

through periodic drivers upgrades.

Removable network devices are used for many

purposes. LAN PCMCIA cards allow physical

connection of old laptops to network cabled

infrastructures. Ten-year-old laptops are usually not

equipped with RJ-45 connectors or 100mbit compliant

Ethernet chipset, used in newer LANs. On the other

hand, Wireless devices are used to access network infrastructures easily and

comfortably, without using wires. At the same time wireless technology guarantees

worldwide Web access. By UTMS technology, telephony companies offer special

contracts for worldwide Internet access. In highway petrol station, airports, train

stations, and also bars, Internet access is offered to customers, for free or cheaply, by

WLAN technology (technically known as IEEE 802.11 or WiFi standard).

 92

An interesting Spanish project, called FON1, aims to create a WiFi community to permit

free world-wide Web access. FON homepage is self-explaining: “FON is the largest

WiFi community in the world. Our members share their wireless Internet access at

home and, in return, enjoy free WiFi wherever they find another Fonero’s Access Point.

It all started as a simple idea. Why should you pay for Internet access on the go when

you have already paid for it at home? Exactly, you shouldn’t. So we decided to help

create a community of people who get more out of their connection through sharing.”

Security implications

Wireless infrastructures are for their nature insecure, since data are not wired-

embedded, but are transmitted as radio signals in the air; information are not physically

protected as in standard wired LAN. Wireless communications are much easier to be

intercepted and analyzed by evil users, looking for sensitive data. Many wireless

antennas are available at cheap price on market.

So, wireless networks should be used with attention and parsimony, only when strictly

necessary (LANs must be preferable when available), and strong encryption

1 Movimento FON, http://en.fon.com/

 93

mechanisms must be implemented: for example, WPA21 in conjunction with a

RADIUS2 server or VPN.

Moreover, fake public WiFi hotspots3 could be configured as traps, in order to force

unaware users to associate with them and to send personal information, like accounts

and credit-card numbers, to the attacker.

At the same time, it is to be considered that generic user is normally not a computer

expert, so could involuntarily associate his laptop to untrusted WiFi networks. When a

wireless card is found, Windows XP supplies the user with a user-friendly GUI where it

is possible double-click for the desired network. Easily and frequently, the user makes a

wrong decision and associates his personal laptop with an evil hotspot.

At the end, but not less important, it is the problem of virus scan many hot-plug network

interfaces. When a removable device is configured within Windows, data transmitted

through it are not intercepted by processes running outside the operating system, as it

could be the antivirus layer of secureOS. Thus, the idea previously described to

intercept network streams from the bottom layer matches the problem, but it is not able

1 WiFi Protected Access is a class of systems to secure wireless networks, created in response to several

serious weaknesses found in the previous WEP system. http://en.wikipedia.org/wiki/Wi-

Fi_Protected_Access

2 Remote Authentication Dial In User Service (RADIUS) is an AAA (authentication, authorization, and

accounting) protocol for applications such as network access or IP mobility. It is intended to work in both

local and roaming situations. FreeRADIUS is a valid Free Software alternative to commercial ones,

http://wiki.freeradius.org/Main_Page

3 Hotspots are venues that offer WiFi access. The public can use their laptop, PDA, or Dual-mode phone

to access the Internet, http://en.wikipedia.org/wiki/Hotspot_%28Wi-Fi%29

 94

to solve it. Therefore, an improved extension, which it is able to handle hot-plug

network devices, has been researched and it is presented here.

Massive distribution of removable network devices and the insecure nature of the

wireless technology make important to secure their use, in order to grant confidentiality

and integrity of personal computer that uses these devices. The proposal solution gives

an answer to these open issues.

Security policies for hot-plug devices are centrally configured by the security

administrator, remotely deployed to each personal computer, and locally enforced, to be

strictly respected by individual users. A device control mechanism has been

implemented to wrap removable devices “offered” to user-system and network

connections are managed from the security shell.

In this way, local users cannot connect to untrusted and unconfigured Internet hotspots.

At the same time, information data carried out over hot-plug network channels are

secured and virus-scanned from the secureOS antivirus layer.

The idea

The innovative idea is to move the hot-plug layer from user-system to security shell.

Virtualization permits to manage devices “offered” to the guest OS through a sort of

access-list. Normally when a removable interface is installed (e.g. plugging in a wireless

device into the laptop’s PCMCIA slot), Windows installs the drivers for the new

peripheral and automatically configures it, providing immediately functionality to end

user.

 95

The removable devices are managed from the secureOS and Windows is denied from

installing and configuring unwanted hardware. Two big benefits are achieved: first, new

device installation is performed only after being accepted by security policy, enabling

an optimal policy enforcement mechanism; second, the hot-plug network interfaces

(both wireless and LAN) are automatically and inconspicuously scanned for viruses and

malware by the existing TCP/IP network layer. Virtualization is essential to create this

security layer that wraps removable devices and manages them safely.

To user is offered the possibility to manage Hot-plug devices graphically by the User

Control Center: a module called Network Connection Control is designed to prompt the

user for the list of preconfigured connections, previously centrally managed by security

officers.

When a removable network device is plugged in, the user is informed about the

available connections: for example, an UTMS connection to company provider or a

wireless association with trusted hotspots. Administrators could enable the user to setup

his own wireless connections or to reconfigure an existing one, after verification by

security policies.

At that point, the appropriate agent setups the desiderate network interface, querying an

hot-plug device database for the appropriate kernel driver to load. The database

contains two tables: the device type/name and the appropriate Linux driver (driver

table); the application used in configuration and their syntax (configuration table).

 96

The configuration is translated from XML to the specific format of network utilities like

ifconfig and iwconfig. When the interface is up, the routing table is appropriately

reconfigured in order to bridge network data to user-system. Network packets are routed

from Windows to hot-plug interfaces (and vice-versa), enabling the user to send and

receive data transparently over the plugged card. With this architecture, antivirus scan is

also performed over removable network interfaces, automatically and without any extra

configuration.

Figure 27 – Network scan – architecture for removable network devices

Moving “hot-plug device management” should not limit user availability. This means to

be able to support network Windows features after migration process. Therefore, it is

not enough be able to set-up removable network interfaces and bridge them to user

environment, but some other extra-mechanisms should be “cloned” from Windows.

 97

For example, what happens when the user travels with the laptop? He would like to use

a new wireless connection, not already pre-configured. Here the agent scans the

neighbouring area for existing hotspots (e.g., with the Kismet1 program), parses the

results and presents them as a multiple-choice list to the user via the User Control

Center.

What has been presented here is a novel approach to secure hot-plug network devices,

as LAN, WLAN, and an UTMS cards, available either in USB and PCMCIA format.

The greater security comes from two separate concepts: policy enforcement and

antivirus scan.

Network policies for hot-plug devices are centrally configured by the security

administrator, remotely deployed to each personal computer, and locally enforced. A

device control mechanism has been implemented to wrap removable devices “offered”

to user-system, and network connections are managed from the security shell. Antivirus

scan is inconspicuously achieved on data transmitted over removable devices, using the

existing AV layer.

1 From project homepage, http://www.kismetwireless.net: “Kismet is an 802.11 layer2 wireless network

detector, sniffer, and intrusion detection system. Kismet will work with any wireless card which supports

raw monitoring (rfmon) mode, and can sniff 802.11b, 802.11a, and 802.11g traffic.”

 98

7. Further security with disk encryption

The use of virtualization to encapsulate the user environment in a protected “security

system” is compatible with the principles of disk encryption. It makes sense to link

these two technologies, embedding a hidden sub-layer that protects both, security shell

and virtual system from confidentiality attacks. The user system can be secured

automatically and transparently by an “external” encryption, and no configuration or

encryption support is required in the user system. A pre-boot authentication secures the

access to the personal computer.

Mobile computing and data portability have changed the paradigm for security

management. Information that was once stored exclusively on mainframes and storage

servers are now frequently stored outside the corporate perimeter as hard disk data on

laptop computers, which are highly susceptible to theft or loss. In fact, recent studies

reveal that more than 80% of U.S. companies have lost laptops with sensitive data in the

last year, and a single laptop theft can cost to organizations, especially when private

consumer information is exposed.

The solution, accepted by research community and software market, is data encryption,

which results in good protection of confidential information. In computer security, the

most common way to protect confidentiality and authenticity of transmitted and stored

data is encryption, which allows users to obscure personal information to make them

 99

unreadable without a special “knowledge”, as a password, a software key, or a physical

token.

A typical approach to protect data confidentiality and authenticity is to encrypt single

files, using PGP1 or other similar tools. Explicit decryption is required before a file can

be modified and after plaintext file is no longer needed; it must be re-encrypted and

securely deleted (wiped). File encryption is widely used to archive secure data

transmission, such as in secure email deployment. However, other more inconspicuous

methods have been devised for storage confidentiality. These can be categorized into

file-system and disk encryption.

In file-system encryption, often called folder encryption, individual directories can be

encrypted. The main problem is that temporary files (such as swap devices / page files,

various caches, “temp” directories) and metadata (such as the directory structure, file

names, size and timestamp) are often stored unencrypted. This exposes sensitive

information as clear text. Notable file-systems that support this kind of encryption

include Microsoft’s EFS2 and UNIX’s CFS3 and TCFS4.

1 Pretty Good Privacy (PGP), originally written by Phil Zimmermann in 1991, it’s a public key encryption

software, nowadays becomes the “de facto standard” in single file encryption as in email cryptography.

2 Microsoft Windows 2000 and later O.S. offer the Encryption File System (EFS) layer to encrypt

transparently single files and folders on NTFS volumes.

3 M. Blaze. A Cryptographic File System from Unix. Proc. First ACM Conference on Computer and

Communication Security, Fairfax, VA, 1993.

4 G. Cattaneo, L. Catuogo, A. Del Sorbo, and P. Persiano. The Design and Implementation of a

Transparent Crypthographic File System for UNIX. USENIX Annual Technical Conference 2001.

 100

A complementary approach known as disk encryption encrypts the whole hard disk

from the bottom (below the file-system layer), so as all data are encrypted

inconspicuously. Independently from installed operating system, each hard disk sector

get encrypted and decrypted individually, once it is access from the file-system. The

operating system, together with drivers, internal registries, and system configurations

gets encrypted with a unique key. At the same time, each user’s profile and personal

document is secure stored in the same way.

Disk encryption is considered a more secure approach, having several benefits

compared to conventional approaches. Major encryption coverage is obtained, since

file-system metadata, temporary files and swap-space are encrypted too; no temporary

data remains unencrypted, exposing sensible information to an attacker. Since disk

encryption is completely transparent, no user interaction is required for specific file and

folder encryption. In disk encryption, the whole hard disk is protected with a global key,

unlocked at boot-time, so as to make all data decryptable for the operating system when

computer is powered on. The credentials are inputted via a pre-boot authentication,

which usually prompts for username and password, manages network authentication or

hardware tokens. Special pre-boot authentication procedures can be implemented to

archive fine-grained user management and better user policy enforcement.

Disk encryption is sometimes used in conjunction with file-system encryption, resulting

in a more secure implementation. Since disk encryption uses the same key for

encrypting the whole volume, all data are decryptable when the system runs. If an

attacker gains access to the computer at run-time, he has access to all files.

Conventional file and folder encryption instead allows different keys for different

 101

portion of disk, and thus an attacker cannot extract information from still-encrypted files

and folders.

Cryptography notions

For a cryptographic point-of-view, disk encryption is traditionally implemented as block

cipher encryption on individual sectors, the basic unit of hard disk storage, consisting of

512 continuous bytes (4096 bits). Individual encryption is required to perform quick

single sector random access reads and writes. A block cipher is a symmetric encryption

algorithm that operates on fixed-length groups

of n bits, termed block1, as 128bit for the

Advanced Encryption Standard (AES).

Figure 28 – Block cipher encryption

When encrypting, the cipher function E takes an

n-bit input block Pn and a k-bit key, yielding an n-bit output block Ek. The decryption

function D is the inverse of encryption, so that:

Cn = Ek (Pn)

Pn = Dk (Cn)

1 To not be confused with hard disk block term, denoted a grouped set of sectors, as 16 sectors. Here the

term refers to the crunch of data on which the cipher works, as 128bit for AES.

 102

A block cipher operates on a single block, and thus encrypting all k blocks in the sector

requires some “mode of operation” to concatenate different outputs so as to provide

confidentiality for the entire sector. The simplest of the encryption modes is the

electronic codebook (ECB) mode, in which the message is divided into blocks and each

block is encrypted separately. The disadvantage of this method is that identical plaintext

blocks are encrypted into identical cipher-text1 blocks; thus, it reveals data pattern and

does not provide good quality message confidentiality.

For this reason, a recursive algorithm has been devised and become the “de facto

standard” for disk encryption. Here is the importance from spending some pages on this

argument.

In the cipher-block chaining (CBC) mode each block is XORed with the previous

cipher before being encrypted; each cipher-text is dependent on all plain text blocks

processed up to that point. To make each message unique, an initialization vector (IV) is

used as input in the first block, resulting in the following formulas:

C0 = IV

Cn = Ek (Pn XOR Cn-1)

Pn = Dk (Cn) XOR Cn-1

Since CBC encryption is a recursive algorithm, the encryption of the nth block requires

the encryption of all proceeding blocks, 0 until n-1. This is an undesired property;

therefore, the CBC chaining is cut every sector and restarted with a new initialisation

1 An encrypted block (the output) of a cipher function is termed cipher-text.

 103

vector, so that sectors are encrypted individually. The choice of the sector as smallest

unit matches with the smallest unit of hard disks, where a sector is also atomic in terms

of access.

Figure 29 - Cipher Block Chaining (CBC) mode encryption

The IV for sector n is usually set to the 32-bit version of the number n encoded in little-

endian padded with zeros to the block-size of the cipher used, if necessary. This is the

most simple IV mode, but at the same the most vulnerable.

Security analysis

Because of the “de facto standard” of CBC in disk encryption and its adoption in the

implementation, a security analysis on risks concerning the use follows.

In some condition, it is conceivable that disks encrypted in CBC-mode are subjected to

repeated scans and active manipulation attacks based on such scans. Some well-known

attacks, pointed out in 2002 by J. Etienne are:

- corruption: corruption of chosen data blocks is difficult to detect. As CBC decryption

has little error propagation, modifying a cipher-text block within sector only points

 104

out the corresponding plain-text block and causes the chosen bit to change only the

block immediately following it;

- translation: CBC decryption depends on two variables, Cn-1 and Cn. Both can be

modified at free will. To make meaningful modifications, an attacker has to replace

the pair Cn-1 and Cn with other cipher-text pair from disk. The first block Cn-1 will

decrypt to garbage, but the second block Cn will yield a copy of the plain text of the

copied cipher block. This attack is also known as copy&paste attack;

- reverting: it is relatively easy to revert chosen sectors to their previous values without

detection.

Next to these attacks, an embedded vulnerability of the CBC-mode permits to reveal

data patterns and facilitates a cryptanalyst to extract information as plain text, without

knowing the encryption key. This opens a big toolbox of watermark attacks.

The consequence is exactly the same reported for the ECB-mode, where identical plain-

text blocks are encrypted into identical cipher-texts, suggesting data structure and

content. However, it has been proved that the risk deriving from this vulnerability is

minimal; in fact, the attack requires about 146 million TB of storage to find at least one

pair of identical cipher blocks, and much more to rebuild a meaningful data pattern1.

1 Recently it has been discovered by O. Saarinen how to raise this probability, opening the possibility for

new critical attacks. With public IV and the predicable difference introduced in the first blocks of a

sequence of plain text, data can be watermarked, which means, the watermarked data is detectable even

when the key has not been recovered. As the IV progresses with a foreseeable pattern and is guaranteed to

change the least significant bit ever step, it can be build identical pair of cipher text by writing three

 105

The attack is based on the property that in CBC decryption the preceding block’s

influence is simple, that is, it’s XORed into the plain text. If two identical cipher blocks

Cn and Cm are found, the attacker knows that both have been formed according to:

Cm=E(Pm XOR Cm-1)

Cn=E(Pn XOR Cn-1)

Since he founds that Cm = Cn, it holds:

Pm XOR Cm-1 = Pn XOR Cn-1

which rewritten is

Cm-1 XOR Cn-1 = Pn XOR Pm

Since the left part is known to attacker, the difference between the two plain texts is

derivable (if one of the blocks happens to be zero, the difference corresponds to the

original content of the other related block).

If Cm or Cn is the first block, the IV must be examined (this is possible cause in standard

CBC-mode the initialization vector is public formed from sector number). For this

reason, the new ESSIV IV-mode has been proposed:

consecutive sectors each with a flipped LSB relative to the previous (the reason for three instead of two is

that the second least significant bit might change as well). This "public-IV"-driven CBC encryption will

output exactly the same cipher text for two consecutive sectors. An attacker can search the disk for

identical consecutive blocks to find the watermark. This can be done in a single pass, and is much more

feasible than finding two identical blocks, that are scattered on the disk, as in the previous attack. A few

bits of information can be encoded into the watermarks, which might serve as tag to prove the existence

searched sensitive material.

 106

E(Sector|Salt) IV, short ESSIV, derives the IV from key material via encryption of the

sector number with a hashed version of the key material, the salt. ESSIV does not

specify a particular hash algorithm, but the digest size of the hash must be an accepted

key size for the block cipher in use.

Since ESSIV initialization vector depends on a confidential piece of information, the

sequence of IV is not known, and watermark attacks, based on public-IV, can't be

launched.

New chaining mode as CMC1 and EME2 are considered secure, because they solve

these open issues, but are heavy in terms of computational performance. The novel

LRW3 seems the correct answer; in fact, it has been designed to be robust against

known vulnerabilities and to provide good performance. CMC- and EME-modes are

already implemented in some commercial encryption software, while LRW is still in an

earlier phase.

1 Shai Halevi and Phillip Rogaway, A Tweakable Enciphering Mode, CMC Cryptology ePrint Archive:

Report 2003/148, http://eprint.iacr.org/2003/148

2IEEE P1619 EME-32-AES Teakable Wide-block Encryption draft,

http://grouper.ieee.org/groups/1619/email/pdf00011.pdf

3 LRW draft, http://grouper.ieee.org/groups/1619/email/bin00014.bin

 107

7.1. Design

The goal has been to disk-encrypt the user system from “the outside”, without requiring

no encryption support or configuration from it, and realizing a hidden and automatic

security protection. The whole personal computer has been encrypted at once: the

security shell, with its operating system (data and swap), security layer (agents and

configurations), security policy database and VMM, and each virtualized user-system.

A unique key has been used, but up to eight keys associated with eight distinct users or

local administrators could be adopted. A pre-boot authentication secures the access to

the personal computer.

A scenario has been considered for the test implementation and its extension has been

suggested. The whole disk labelled as root partition is encrypted at once, and a boot

partition used to start the computer and run a pre-boot authentication. The boot partition

is accessed at an early stage, so it cannot be encrypted. If computer gets lost or stolen,

no data can be extracted from the hard disk, which is encrypted with strong algorithms

and protected by a secure authentication mechanism (even opening the computer case,

extracting and installing the hard disk on a second machine does not give access to

confidential information).

The computer disk can be decrypted and accessed exclusively by a normal user,

authenticated via username and password, and a local administrator via hardware token

as USB-stick, achieving better security and physically protecting administrator login. In

detail, this stick is entirely encrypted and is unlocked with a password prompted at pre-

 108

boot time. It contains the owner’s username and a sequence of computer-ID and disk

password pairs, enabling the access to multiple encrypted systems with a unique

authentication token. It can be considered as a master key, which contains different

passwords to many associated computers. This feature is quite useful and fits this

scenario, in which a local administrator is designed for manage a set of computers,

independently and differently configured, but would like to remember just the single

password of his personal token. For a secure point-of-view, token- and disk- passwords

are decoupled, and local administrator does not need to know the second ones, which

are stored into the token from central administration.

The boot partition contains a special admin token used as “test” for administrator

authentication. In the current implementation, when the root partition password is

retrieved, the admin token is tried to be unlocked; if decryption fails the user does not

own administrator rights (disk and admin-token are obviously encrypted with the same

key). Alternatively, the token, now unlocked, communicates to the system that the

administrator has been correctly authenticated during the pre-boot phase.

This admin token gets such a high importance, because it represents a secure

communication channel between pre-boot- and system-boot- phases for the group the

user belongs to (generic or administrator); no sensitive information as the key’s

passwords are stored.

 109

Figure 30 - Disk encryption - design

 110

When the computer powers on, the boot manager loads kernel and ram disk1 from the

boot partition; this is why both are stored unencrypted. The initrd contains kernel

drivers2 to handle disk-encryption and the pre-boot authentication procedure that is run3.

A password is prompted for disk decryption and user authentication. Later on, the

system tries to detect connected USB-sticks, querying the USB kernel framework and

presenting two different use cases.

If no USB is found, the standard password authentication is followed. The admin token

is queried with the password to understand if user is privileged. In that case, the system

hangs and an error is returned (remember that administrator must login only via USB-

token for security reasons). Otherwise, the disk is decrypted and system is loaded in

user environment.

When USB-stick is connected, the token authentication is used. The same password is

used to decrypt the stick and when no error occurs, the computer-ID is looked up and

verified against the real installation. The associated password is read and used for disk

decryption and admin token unlocking, in the same way as in the password

authentication. However here, only administrator login is granted and an error is raised

when the stick belongs to an unprivileged user.

1 The ram disk is a file that, when loaded, behaves as virtual disk, located in the active computer memory

(RAM). Linux uses a initial ram disk, termed initrd, to preload a set of kernel modules and execute

special scripts at pre-boot time.

2 Technically drivers stand for modules.

3 Appendix A contains an example used in the test implementation.

 111

Once the administrator is authenticated, the system offers the downgrading of privileges

in order to simulate the standard user boot. This feature is very important for debugging.

When the system starts in admin environment, any graphical interface is replaced with

debugging text and, instead of running the Windows system, a root shell is opened.

 112

Password prompt

USB-stick

connected ?

decrypt USB-stick

no

yes

successful ?

decrypt

 root partition

successful ?

yes

disconnect

USB-stick

admin right?

yes

yes

If closed, unlock

admin token

yes

start Windows

environment

no

fatal error !

Wrong password

no

unlock admin

token

successful ?

yes

decrypt root

partition

successful ?

yes

no

no

no

no

System boot Kernel loading Ramdisk loading

open admin

console

clear passwords

admin == 1 ?

admin := 1

Computer ID

lookup

access to

password

fatal error !

Admin access

requires token

error

fatal error !

USB-stick not valid

for this computer

unlock admin

token

successful ?

fatal error !

User access not

allow here

yes no

If open, lock

admin token

Figure 31 - Disk encryption - architecture

 113

7.2. Implementation

The test implementation has been done with LUKS1, being the upcoming GNU/Linux

standard in disk encryption and providing good documentation, facilitating initial

installation and future system maintenance. At the same time, LUKS provides secure

encryption ciphers and a trusted management of multiple key passwords. Up to eight

keys can be configured, as well as different users.

AES in CBC-ESSIV mode has been adopted as block cipher, being approved by the US

government's National Institute of Standards and Technology and considered highly

secure by the cryptography community. AES is the successor of DES, it is effective

standard since 2002, and it is now the most popular algorithm used in symmetric key

cryptography and particularly appreciated for disk encryption applications. The ESSIV

mode protects against watermark attacks as previously discussed.

Disk encryption is enabled formatting the entire disk with the command:

echo <password> |

cryptsetup --cipher aes-cbc-essiv:sha256

--verify-passphrase luksFormat --batch-mode <disc>

The aes-cbc-essiv:sha256 flag specifies AES in CBC-ESSIV mode as cipher algorithm,

in conjunction with SHA256 for digest functionalities.

LUKS is natively supported by Linux kernel, when compiled with these options:

1 Linux Unified Key Setup, http://luks.endorphin.org/

 114

Code maturity level options --->

[*] Prompt for development code/drivers

Device Drivers -->

 Multi-device support (RAID and LVM) --->

[*] Multiple devices driver support (RAID and LVM)

<*> Device mapper support

<*> Crypt target support

 Cryptographic Options -->

<*> AES cipher algorithms (i586)

<*> SHA256 digest algorithm

The last step is to instruct the ram-disk with the pre-boot authentication process. In this

way, the computer starts presenting a login mask, where to insert the credentials for

decrypting the hard disk.

 115

Figure 32 - Disk encryption – screen-shot

The interface is completely loocked and secured, so that the interaction is with the input

box. Standard GNU/Linux shortcuts are disabled via boot loader and appropriate kernel

patching. There is no way to interrupt or modify the correct boot process.

Debugging information, generated by the encryption layer and the init scripts, is hidden

graphically through a “boot splash” software. This solution shows a set of animated

icons that are dynamically activated during the boot process, as a progress bar, when

decryption is done via USB-stick for example. If the pre-boot authentication validates

the user as local administrator, this graphical interface is immediately substituted with a

debugging terminal and the guest OS in not loaded.

 116

Figure 33 - User-friendly boot process

A generalization to the problem

Instead of using the admin token residing on boot partition as “test” for administrator

authentication, a central database is queried to retrieve the group the user belongs to.

This database could reside remotely and be queried via some sort of directory access

protocols like LDAP. This extension requires both password and username inputted

(except when username is read from the stick), but it is more flexible and generic.

 117

Figure 34 - Disk encryption – future architecture

 118

8. Conclusions

A new approach to virtualization for secure personal computers has been presented.

Virtualization, which traditionally was used for server consolidation purposes, has been

distributed to each single computer. Thin clients that were used to access the

mainframe’s resources now have been equipped with two operating systems, separated

by a virtualization layer. By virtualization, the security of disparate systems is

homogeneously managed.

The security services have been detached from the user system in order to be

encapsulated in a hidden security shell. Protecting these services from the user

environment has shown many advantages. First, the security services cannot be

manipulated and the system’s tamper resistance is ensured. Second, the security policies

defined on the central site can be locally enforced.

A novel antivirus has been designed to exploit this new application of virtualization.

While conventional personal antivirus could be switched off and avoided by evil codes

and skilled users, now the virus protection has been embedded into the security system,

realizing a threat resistant protection for the user environment.

The whole user system, handled by the antivirus as a single virtual-image file, can be

efficiently virus scanned. The 3rd generation of the NTFS GNU/Linux drivers offers

secure writing operations on NTFS file-systems. The antivirus could be integrated in the

computer boot to assure system cleanness, and in the shutdown to avoid time wasting.

In fact, a mandatory shutdown of the virtual machine prevents inconsistent states.

 119

During the scan activity, which takes on a standard-configured workspace about ten

minutes, the disk image could become easily inconsistent with the real content, due to

the possible modifications carried out by the user environment. On the contrary, the

antivirus “reparations” to the disk’s content could damage the state of the user system.

It has been proved how the relevant on-access scan component analyzes the content of

the user’s files as soon as they are addressed by the virtual machine. A special driver

integrated into the virtual machine has been designed to intercept the user’s file-system

operations and to build a logical representation of the file structure. With the read access

from the user system to the disk’s file-system, the involved data blocks are looked up or

inserted in a cache and examined by the antivirus engine.

The big challenge has been to develop an efficient, fast, and reliable cache that does not

behave as a “bottleneck” for the user-system and does not kill its usability.

The file structure has been accurately studied in order to design a fast and a no memory-

waste model of cache. A self-balancing BST (AVL-tree) has been adopted for its

capacity to reorganize the cache’s information, to be quickly addressable. Standard

operations are about 70% quicker than conventional trees, when handling non-random

data. Real-world scenarios as file-system caches realize this non-uniform statistic

because sectors are accessed often sequentially and repeatedly.

The caching algorithm speeds up the antivirus of about two times, scanning only those

files that have been previously modified, hypothetically by a virus. By marking the file

with a “flag”, it is possible to understand which data could be infected. Each file is

 120

marked when being created or modified and unmarked after being scanned. Therefore,

only marked files are scanned at read access, while unmarked files and writing

operation are discarded.

A filter could be inserted to restrict the scan to those particular classes of files that are

targets for viruses like binaries and word macros, skipping metadata and large files (e.g.

plug&play archive). Since the on-access scan is a synchronous process and interrupts

the user system while executing, a large amount of data to scan could freeze the

computer for several seconds. It can be reasonable to use the “dirty flag” to mark a set

of blocks instead of the whole file, so that just a part gets scanned (e.g. the swap file

with size around the gigabyte)

Solutions as enabling the on-access scan only for removable mass-storage devices, by

means of a tight collaboration with the VMM’s device control, are too risky. Viruses

could spread to the user system in alternative forms and channels, avoiding both, the

network protection and the curbed on-access scan (e.g. stenographic exploits and

encrypted viruses coming over the network).

The antivirus impact on performance is remarkable when a large amount of data is read.

When the user system starts, for example, the antivirus slows down the computer of

several times due to cache building. An interesting idea has been to preload the cache

content with structures of files read at boot time, such as operating system’s drivers and

libraries, empirically chosen.

Finally, the NTFS architecture is still partially obfuscated: neither the source codes nor

adequate technical information is provided. The difficulty of debugging strange file-

 121

system behaviours has generated obvious problems in the code implementation. The

performance is quite bad, because they are damaged by periodical cache rebuilds. These

are needed to prevent inconsistent states between disk- and cache- contents, whenever

an unknown writing operation occurs on the file index table.

A sort of transparent proxy has been designed to inspect viruses and malware coming

over TCP/IP connections, such as emails and web downloads, before they reach the user

environment. This solution has shown the benefits of scanning inconspicuously any

user’s network stream from the hidden sub-layer. This is realized independently from

the physical interface used by the stream to carry out such information.

This is valid also for encrypted tunnels (VPNs) and SSL-enabled protocols. VPNs could

be established by the security shell and their content bridged as plain text to the user

system, after being inspected (and the other way round); while the man-in-the-middle

attack could be exploited to intercept the SSL-protocols handshaking and to real-time

decrypt the connection’s content. For completeness, the removable network devices get

virus protected too, by an appropriate agent that controls their use. Special policies

define which devices are accepted. Their configuration is realized by the security shell.

Further existing security technologies have found great benefits in this virtualization

paradigm. The thesis has considered the disk encryption issue as one of the technologies

worth of investigating. A hidden encryption layer has been embedded to protect at the

same times both security shell and virtual system from confidentiality attacks. The user

environment is therefore encrypted “from the outside”.

 122

By coupling encryption and virtualization technologies, two evident benefits arise:

encryption is realized automatically and not visible from the user-system in which no

configuration or encryption support is required; the disk’s keys are managed

homogeneously at the central site, independently from the virtual system installed on

the single computers.

 123

Appendix A. Sample code

Interface between the Clamavis antivirus engine (libclamAV) and the on-access

scan service

// Initialize the antivirus engine

int td_init_avscan(void)

{

 int ret = -1;

 // init globals

 virusdb = NULL;

 bzero (&claminfo, sizeof (struct s_info));

 strcpy (dbdir, "/var/lib/clamav");

 // load virus database

 if((ret = cl_loaddbdir(dbdir, &virusdb, &claminfo.sigs)))

 {

 printf("@%s\n", cl_strerror(ret));

 free(dbdir);

 return ret;

 }

 if(!virusdb)

 {

 printf("@Can't initialize the virus database\n");

 return ret;

 }

 if((ret = cl_build(virusdb)) != 0)

 {

printf("@Initialization error: %s\n", cl_strerror(ret));

 return ret;

 }

 // open virus scan

 char buf[4096];

 snprintf(buf, 4096, "/secunet/AVSCAN.log");

 AVfd = open(buf, O_CREAT | O_RDWR | O_TRUNC, 0644);

 return 0; // ok

}

// This is the real interface to the antivirus engine

int td_avscan (struct sector_list *pSectorList, int BDRVfd,

 char **virname)

{

 // reverse engineering on eicar.com

 short otfrec = 1;

 unsigned short ftype = 500;

 //const char **virname;

 124

 int rc;

 // reset status pointer

 pStatus.element=0;

 pStatus.offset=0;

 // scan

 rc = _td_scanlist (pSectorList, BDRVfd, virname,

 &claminfo.blocks, virusdb, otfrec, ftype);

 // check output

 if (rc == CL_VIRUS)

 {

 dprintf (AVfd, "* td_avscan(): %s - VIRUS FOUND: %s\n",

 pSectorList->m_p_filename, *virname);

 }

 else

 {

 dprintf (AVfd, "td_avscan(): %s - virus not found\n",

 pSectorList->m_p_filename);

 }

 return rc;

}

// It retrieves the file’s content for the antivirus engine

int _td_readn (struct sector_list *pSectorList, int BDRVfd,

 void *buff, unsigned int count)

{

 unsigned int i = 0;

 unsigned int todo = count;

 unsigned int done = 0;

 unsigned int ret;

 unsigned long long base_sector_i, nb_sectors_i;

 /* count file size */

 unsigned int c;

 unsigned int tsize = 0;

 // exclude file bigger of 10Mbyte (20.000 sectors)

 for (c=0 ; c<pSectorList->m_sector_list_size; c++)

 tsize+=

 pSectorList->m_p_sector_list_entries[c].m_last_sector-

 pSectorList->m_p_sector_list_entries[c].m_first_sector;

 if (tsize>20000)

 {

 dprintf (AVfd, "* skipping %s (%u MB)\n",

 pSectorList->m_p_filename, tsize*512/1000000);

 return 0;

 }

 while (todo>0 && (pStatus.element<pSectorList

 ->m_sector_list_size))

 {

 base_sector_i=

 125

 pSectorList->m_p_sector_list_entries[pStatus.element].

 m_first_sector * 512;

 nb_sectors_i = (

 pSectorList->m_p_sector_list_entries[pStatus.element].

 m_last_sector

 -

 pSectorList->m_p_sector_list_entries[pStatus.element].

 m_first_sector

) * 512;

 // seek to current position

 lseek (BDRVfd, base_sector_i+pStatus.offset, SEEK_SET);

 if (nb_sectors_i-pStatus.offset > todo)

 // current element is bigger of what we have to read

 {

 if ((ret = read (BDRVfd, buff+done, todo))<0)

 {

 dprintf (2, "fatal error while reading sector

 content %llu for AV\n", base_sector_i+pStatus.offset);

 return -1;

 }

 // update I have to still read and I have read so far

 todo-=ret;

 done+=ret;

 // increment offset pointer

 pStatus.offset+=ret;

 }

 //left sectors on i-element are not enough

 else

 {

 if ((ret = read (BDRVfd, buff+done,

 nb_sectors_i-pStatus.offset))<0)

 {

 dprintf (2, "fatal error while reading sector

 content %llu for AV\n", base_sector_i+pStatus.offset);

 return -1;

 }

 // update I have to still read and I have read so far

 todo-=ret;

 done+=ret;

 // set status pointer to next element

 i++;

 // go to next element

 pStatus.element++;

 pStatus.offset=0;

 }

 }

 126

 return done;

}

The pre-boot authentication used in the test implementation for disk encryption

#!/bin/sh

[cut]

/bin/loadkeys /etc/console/boottime.kmap.gz

ADMIN=0 # Admin boolean FLAG

while [1]

do

 PASS=`/bin/dialog --insecure --nocancel --passwordbox

 "Please enter password" 0 0 3>&1 1>&2 2>&3`

 /bin/clear

 # check if we have a usb-pen.

 # yes -> decrypt it

 # else -> decrypt directly hard-disk

 USB=`/bin/dmesg|/bin/egrep -e

 "(sd.*removable|removable.*sd)"|/bin/rev|/bin/cut -f1 -d "

 "|/bin/rev|/bin/tail -1`

 if ["$USB" = ""]; then

 echo "USB Device NOT found. Going through HD decryption."

 # We don't want administrator to log-in WITHOUT USB

 /bin/mount -t ext3 /dev/sda7 /mnt # mount boot-partition

assign loop-device to admincontainer

 /sbin/losetup /dev/loop0 /mnt/admincontainer

 echo $PASS|

 /sbin/cryptsetup luksOpen /dev/loop0 admincontainer -T 1

 if [$? = 0]; then # admin

 echo "DEBUG (TO DELETE AND GIVE GENERIC ERROR):

 Admin access is permitted only via USB"

 /sbin/cryptsetup luksClose admincontainer

 /sbin/losetup -d /dev/loop0

 /bin/umount /mnt

 continue

 else # user

 # unlock /

 echo $PASS|/sbin/cryptsetup luksOpen /dev/sda3 cryptoroot

 if [$? = 0]; then

 break # password correct -> we have finished

 else

 continue # password wrong -> ask another passwd

 fi

 fi

 127

 else

 USB=$USB"1" # concat 1 to hd? /sd?

 echo "USB device FOUND: $USB"

unlock the usbstick

 echo $PASS|/sbin/cryptsetup luksOpen /dev/$USB cryptoUsb

if [$? != 0]; then # the USB password is WRONG

 continue # ask another passwd

 fi

mount usbstick

 /bin/mount -t ext3 -o ro /dev/mapper/cryptoUsb /mnt

 USER=`/bin/cat /mnt/username`

 if [$USER = "admin"]; then

 echo "Hello Administrator :-)"

 # now we have only one system (easier test procedure)

 PASS=`/bin/cat /mnt/passwd|/bin/cut -d : -f 2`

unlock /

echo $PASS|/sbin/cryptsetup luksOpen /dev/sda3 cryptoroot

 if [$? != 0]; then # wrong

 echo

 echo "ERROR: system password mismatch or user not allowed."

 echo "--- SHUTTING DOWN ---"

 echo

 /bin/sleep 5

 /sbin/halt -f –p

 else # passwd correct

 # close the usb key

 /bin/umount -f /mnt

 /sbin/cryptsetup luksClose cryptoUsb

 # ask for downgrading to normal user

 dialog --defaultno --no-shadow --yesno

"Hello Admin! Put usb in a secure place.

Satisfied with User-Rights?"

 0 0 3>&1 1>&2 2>&3

 if [$? = 0]; then # yes

 /bin/clear

 echo "Ok! Your rights will be downgraded to

 User-Rights for this session."

 else # Admin wants to be Admin

 /bin/mount -t ext3 /dev/sda7 /mnt

 /sbin/losetup /dev/loop0 /mnt/admincontainer

 # assign loop-device to admincontainer

 echo $PASS|/sbin/cryptsetup

luksOpen /dev/loop0 admincontainer -T 1

 128

 if [$? != 0]; then # just for debugging

 echo

 echo "ERROR: can't unlock admincontainer!"

 echo "--- SHUTTING DOWN ---"

 echo

 /bin/sleep 5

 /sbin/halt -f -p

 fi

ADMIN=1

 fi

 # we have finished

 Break

fi

fi

fi

done

PASS= # overwrite the password string

if [$ADMIN -eq 1]; then

echo 0 > /proc/splash

 /bin/clear

 echo -e "\033[01;32m*** Booting in Admin mode ***\033[01;37m"

fi

 129

Appendix B. Index of figures and tables

Figures

Figure 1 - VMM performance test.. 16

Figure 2 – The new virtualization paradigm .. 17

Figure 3 - Security and system management.. 19

Figure 4 - Personal antivirus approach ... 21

Figure 5 – Novel antivirus approach .. 22

Figure 6 - Novel antivirus design ... 23

Figure 7 - Linux Virtual File-system (VFS)... 29

Figure 8 - FUSE Architecture - The stat() file-system call .. 37

Figure 9 - On-access scan - idea... 40

Figure 10 - On-access scan – global architecture ... 42

Figure 11 – On-access scan – read algorithm... 45

Figure 12 – On-access scan – write algorithm ... 47

Figure 13 – File organization on disk... 52

Figure 14 - On-access scan - file architecture .. 53

Figure 15 - Hash table showing collision problem... 55

Figure 16 - Tree degrading to linked list .. 57

Figure 17 - Example of un-balanced BST.. 58

Figure 18 – The same tree after balancing ... 58

Figure 19 – BST evaluation - squid scenario ... 65

 130

Figure 20 - On-access scan – cache architecture.. 67

Figure 21 - On-access scan – screen-shoot: virus found .. 76

Figure 22 - Network scan - basic architecture.. 78

Figure 23 - VPN scan problem... 81

Figure 24 – Network scan – architecture for VPNs ... 83

Figure 25 – SSL layer design ... 85

Figure 26 - Man-In-The-Middle attacks against HTTPS ... 89

Figure 27 – Network scan – architecture for removable network devices 96

Figure 28 – Block cipher encryption .. 101

Figure 29 - Cipher Block Chaining (CBC) mode encryption....................................... 103

Figure 30 - Disk encryption - design .. 109

Figure 31 - Disk encryption - architecture.. 112

Figure 32 - Disk encryption – screen-shot.. 115

Figure 33 - User-friendly boot process... 116

Figure 34 - Disk encryption – future architecture .. 117

Tables

Table 1 - Metadata files ftored in the MFT .. 51

Table 2 - Computational complexity of BST operations.. 59

Table 3 - BST evaluation.. 63

 131

Appendix C. References

1. D. Chu, Senior Director of VMware, What is Virtualization?,

http://news.zdnet.com/2036-2_22-6058678.html

2. S. Potter, J. Nieh, D. Subhraveti, Secure Isolation and Migration of Untrusted

Legacy Applications, Columbia University Technical Report CUCS-005-04,

January 2004

3. N. kiyanclar, A Survey of Virtualization Techniques. Focusing on Secure On-

Demand Cluster Computing, ACM CORR. Technical Report cs.OS/0511010,

May 17 2006

4. P. Ferrie, Attacks on Virtual Machine Emulators, Symantec Advanced Threat

Research

5. O. Saarinen, Encrypted Watermarks and Linux Laptop Security, Proc. The 5th

International Workshop on Information Security Applications (WISA2004), Jeju

Island, Republic of Korea, August 23-25, 2004

6. C. Fruhwirth, New Methods in Hard Disk Encryption, Institute for Computer

Languages Theory and Logic Group. Vienna University of Technology

7. J. Etienne, Vulnerability in encrypted loop device for Linux, 2002

8. C. Kent, Draft Proposal for Tweakable Narrow-block Encryption, IEEE P1619

draft, October 19, 2004

9. N. Weaver, V. Paxon, S. Staniford, R. Cunningham, A Taxonomy of Computer

Worms, Proceedings of the ACM CCS First Workshop on Rapid Malcode

(WORM), October 2003

10. T. Kojm, libclamAV, http://www.clamav.net/doc/

 132

11. S. Gordon, D. Chess, Attitude Adjustment: Trojans and Malware on the Internet:

An Update, 1999

12. M. Bishop, An Overview of Computer Viruses in a Research Environment, 1992

13. Microsoft TechNet, How NTFS Works, March 2003

14. N. Rajeev, Windows NT File System Internals: A Developer's Guide (1st ed.),

O'Reilly, ISBN 1-56592-249-2, (1997).

15. D. P. Bovet, M. Cesati, Understanding the Linux Kernel (3rd ed.), O'Reilly,

ISBN 0-59600-565-2, (2005)

16. R. Russon, Y. Fledel, Linux-NTFS Technical Development Documentation (V.

0.5.8), http://www.linux-ntfs.org/content/view/104/43/

17. D.D. Sleator and R.E. Tarjan. Self-Adjusting Binary Search Trees. Journal of the

ACM 32:3, pages 652-686, 1985.

18. B. Pfaff, Performance Analysis of BSTs in System Software.

SIGMETRICS/Performance poster, June 2004.

19. J.-L. Baer and B. Schwab, A comparison of tree-balancing algorithms.

Communications of the ACM, vol. 20, no. 5, pp. 322–330, 1977.

20. W. E. Wright, An empirical evaluation of algorithms for dynamically

maintaining binary search trees in Proceedings of the ACM 1980 annual

conference, pp. 505–515, 1980.

21. E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structures in C++.

Computer Science Press, 1995. ISBN 0-7167-8292-8

22. B. Pfaff, GNU libavl,

http://www.stanford.edu/~blp/avl/libavl.html/

 133

23. A. Ornaghi, M. Valleri, Man-in-the-Middle: cos’è, come ottenerlo, come

prevenirlo, come sfruttarlo, Italian Black Hats Association, September 2002

	Content
	Introduction
	Motivations

	Security by virtualization
	Introduction to computer virtualization
	Virtualization approach to security

	Virus protection
	Image scan
	File repair

	On-access scan
	File organization
	Cache design
	Antivirus integration
	Testing

	Network scan
	VPNs
	TLS/SSH and SSH protocols
	Removable network devices

	Further security with disk encryption
	Design
	Implementation

	Conclusions
	Appendix A. Sample code
	Appendix B. Index of figures and tables
	Appendix C. References

